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Abstract

Context matters when modeling language translation, but state-of-the-art ap-
proaches predominantly model these dependencies via larger translation units.
This decision results in problems related to computational efficiency (runtime and
memory) and statistical efficiency (millions of sentences, but billions of translation
rules), and as a result such methods stop short of conditioning on extreme amounts
of local context or global context.

This thesis takes a step back from the current zeitgeist and posits another view:
while context influences translation, its influence is inherently low-dimensional,
and problems of computational and statistical tractability can be solved by us-
ing dimensionality reduction and representation learning techniques. The low-
dimensional representations we recover intuitively capture this observation, that
the phenomena that drive translation are controlled by context residing in a more
compact space than the lexical-based (word or n-gram) “one-hot” or count-based
spaces.

We consider low-dimensional representations of context, recovered via a multi-
view canonical correlations analysis, as well as low-dimensional representations of
translation units that are expressed (featurized) in terms of context, recovered by
a rank-reduced SVD of a feature space defined over inside and outside trees in a
synchronous grammar. Lastly, we test our low-dimensional hypothesis in the limit,
by considering a semi-supervised learning scenario where contextual information is
gleaned from large amounts of unlabeled data. All empirical setups show improve-
ments by taking into account the low-dimensional hypothesis, indicating that this
route is an effective way to boost performance while maintaining model parsimony.
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Chapter 1

Introduction

“Always design a thing by considering it in its larger context – a chair in a
room, a room in a house, a house in an environment, an environment in a
city plan.”

— Eliel Saarinen

Context matters when modeling translation. We have seen empirical evidence of this assertion
in the transition from word- to phrase-based models, which achieve start-of-the-art perfor-
mance by relying on long multi-word units or phrases to incorporate local context (Koehn
et al., 2003, Chiang, 2007). More recently, neural and factored translation models have started
to condition on large amounts of source-language context and have reported sizable gains in
translation performance (Feng and Cohn, 2013, Devlin et al., 2014). Like the current zeitgeist,
this thesis takes seriously the premise that modeling contextual dependencies in machine
translation (MT) is key to effective translation. However, state-of-the-art approaches pre-
dominantly model these dependencies via larger translation units. Larger units mean larger
models, resulting in problems in computational efficiency (runtime and memory) and statis-
tical efficiency (how can we reliably learn parameters for billions of rules from millions of
sentences?). Furthermore, we contend that translation models should be sensitive to far more
than “local” context: larger contexts are observed during evaluation (e.g., the entire sentence
to be translated or even the document containing the sentence), and this information should
be used when translating since it is computationally inexpensive to do so and produces better
translations. For example, a subject could be separated by a long subordinate clause and if
we consider limited local context, the subject’s influence on a subsequent verb phrase may be
ignored. But if we cannot reliably estimate context-insensitive models or effectively decode
with them, how should we hope to develop models that are sensitive to the rich input context
available during test time? Clearly, another approach is necessary.

The thesis statement and central hypothesis of this work is that while context influences trans-
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lation, its influence is inherently low-dimensional, and problems of computational and statis-
tical tractability can be solved by using dimensionality reduction and representation learning
techniques. To make the right translation choices for ambiguous words like bank or watch, it
is unnecessary to embed the word in a long phrase as a means of incorporating context (by
naive memorization of sequences); a small amount of information, e.g., the presence of a deter-
miner before watch, or the knowledge that bank occurs amongst context that is semantically
related to finance, suffices. The low-dimensional representations we recover intuitively capture
this observation, that the phenomena that drive translation are controlled by context residing
in a more compact space than the lexical-based (word or n-gram) “one-hot” or count-based
spaces. Furthermore, they allow more reliable parameter estimates from less data in a more
computationally efficient manner (Kakade and Foster, 2007).

In most previous approaches, global context adaptation is carried out on top of a massive
phrase-based model. Due to the sheer number of phrases to consider, this decision often
limits the extent to which context can be considered and for tractability reasons, context
disambiguation often boils down to a lexical selection problem whereas ideally we should
consider translation rules with multi-word units. Despite empirical evidence showing models
with composed rules (ones that can be formed out of smaller rules) outperform their minimal
counterparts by weakening independence assumptions in the translation model (Koehn et al.,
2003, Galley et al., 2006), we propose to work with minimal translation rules as our basic
units. The reasoning is that if we have better translation models that take into account context
more effectively than including limited amounts within translation rules, we can eliminate the
gigantic grammars that phrase-based translation has relied on and work with smaller, simpler
models that generalize better to new corpora. Thus, a secondary objective of this thesis is to
explore the performance of minimal grammars in conjunction with low-dimensional context-
dependent models, and compare them to composed grammars which incorporate local context
dependence within rules.

An outline of the structure of the thesis is now provided.

1.1 Dissertation Outline

In this thesis, we consider low-dimensional representations of context, as well as low-dimensional
representations of translation units that are expressed (featurized) in terms of context. In
Chapter 2, we introduce the fundamental concepts behind the thesis. Specifically, we discuss
two assumptions that our low-dimensional hypothesis hinges on, the multi-view and mani-
fold assumptions, and describe how they are utilized in this thesis when applied to linguistic
context. Furthermore, we also provide a brief primer on machine translation, with an empha-
sis on the relevant parts for this thesis. In particular, the distinction between minimal and
composed grammars is stressed, motivating the need to incorporate larger forms of context
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through auxiliary models. The ideas presented in Ch. 2 are used throughout the remainder of
the thesis, and we will refer back to them as necessary. Then, Chapters 3 ,4, and 5 explore
three instantiations of the low-dimensional assumption:

1. Low-dimensional embeddings of translation units (Ch. 3): we propose a latent-
variable model for synchronous context-free grammars (SCFGs) and apply it to hierar-
chical phrase-based translation (HPBT). The non-terminals in each rule are augmented
with latent states in a context-dependent manner, which we learn from a parallel corpus.
Specifically, non-terminals are refined by expressing them in terms of low-dimensional
projections of the context in which they occur. In this case, we project a high-dimensional
representation of a translation rule, represented with the empirical covariances of inside
and outside tree features in synchronous trees where the rule occurs as a non-terminal,
into a low-rank space.

2. Low-dimensional embeddings of context (Ch. 4): we adopt the multi-view as-
sumption (Foster et al., 2008, Dhillon et al., 2011), which states that we can use two
complementary views of the data (e.g., the left and right contexts a source phrase oc-
curs in) to recover a low-dimensional basis via canonical correlation analysis (CCA).
Supervised learning can then proceed in this low-rank space but with reduced sample
complexity. The intuition is to utilize information in both views which correlate well
with each other. In this case, we project a high-dimensional representation of context
defined in terms of lexical and syntactic features into a low-dimensional space using
CCA. We model phrasal choice and translation sense disambiguation by conditioning on
low-dimensional representations of source context in this manner.

3. Low-dimensional embeddings and semi-supervised learning (Ch. 5): by looking
at a setting where large amounts of context can be gleaned in an unsupervised man-
ner and combined with translation information from parallel corpora, we test our low-
dimensional hypothesis in semi-supervised scenarios. Specifically, we consider a nearest-
neighbor approach to translation where a phrase pair is embedded in a graph, the source
side a node with edges to its most similar phrases, and the target side as a “label” for the
node. The presence and strengths of these edges is determined by the context in which
the phrases occur, and is computed on monolingual corpora. Translation information
can propagate through the graph either enabling the discovery of new phrases and their
translations, or in a domain adaptation setting where we use in-domain monolingual
data to embed translation units. The framework allows an interesting empirical evalua-
tion of context dimensionality in an MT setting, since the graphs can be constructed in
a number of different ways, either in the raw high-dimensional space or in a recovered
low-dimensional one.

Figure 1.1 is a visual representation of the three instantiations, and emphasizes the common
elements among them; both structured and unstructured inputs are considered through the
lenses of the multi-view and manifold assumptions for representation learning purposes, and
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this information is integrated into a standard MT setup through a number of ways. Lastly,
Chapter 6 discusses several proposals for extending the work presented in this thesis and draws
general conclusions on the topic, including potential downsides with our framework.

Context
Structured Unstructured

X1

X3

X5

X4

X6

diese fragen

werden diese fragen werden

Latent-Variable Model
Linear Regression

k-NN
Semi-supervised

MT Integration

diese fragen werden

multi-view

L R

manifold

frage
untersuchen

anfrage
Dimensionality Reduction
Representation Learning

R3 R2
Supervised

Semi-Supervised

Figure 1.1: Pictorial representation of the three instantiations of the low-dimensional hypothesis that
we explore.

1.2 Research Contributions

This thesis makes several novel contributions, which are broadly divided into two categories:
Foundations and Applications.

1.2.1 Foundations

• A generalization of the latent PCFGs formalization (Matsuzaki et al., 2005) to latent
SCFGs. Latent SCFGs are the bilingual generalization of latent PCFGs, just as SCFGs
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are the bilingual generalization of PCFGs. The formalization is quite general, and a
number of inference and parameter estimation algorithms can be applied.

• A novel tensor-based version of the inside-outside algorithm that operates on a hy-
pergraph representation of the parse forest for an input sentence. The algorithm is
a straightforward generalization of the regular inside-outside algorithm, except scalar
multiplications are replaced by tensor dot products.

• Two algorithms that learn these latent categories (equivalently, the latent space) from
the data without any externally imposed syntactic labels. The first is a likelihood maxi-
mization approach that is a variant of EM, and the second is a novel spectral estimation
algorithm based on the method of moments, which is computationally faster than the
EM-based algorithm, and under certain assumptions yields the globally optimal solution.

• Two classes of methods to jointly estimate low-dimensional context and translation rule
representations. The first is a linear estimation technique that computes a CCA between
different views of the context (a generalization of the spectral estimation algorithm for
latent SCFGs), after which supervised learning is conducted in the low-dimensional
context space. The second is a non-linear method that is a generalization of the skip-
gram model used to estimate word representations, but for bilingual phrase pairs.

• A graph-based SSL method to expand translation models with information contained
in monolingual data via contextual similarity. There are two forms of context dimen-
sionality reduction here; the first is the graph embedding itself, which leverages the low-
dimensional manifold structure of the data, and the second is a dimensionality reduction
in the ambient space, which theoretically should make manifold estimation easier.

1.2.2 Applications

• An empirical demonstration that adding marginal rule probabilities from a latent SCFG
model as features in the traditional linear translation model (Och and Ney, 2004) im-
proves translation quality, and release of the entire source code as the spectral-scfg

package.

• A thorough experimental comparison of phrase sense disambiguation models, both high-
dimensional and low-dimensional, in isolated and end-to-end MT settings, and release
of the entire source code as the cca-mt package.

• An exploration of the transition from minimal to composed grammars, not through the
conventional methods of using larger translation rules, but instead through auxiliary
low-rank models.

• Experimental evidence in different language pairs that expanding translation models
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using graph embeddings results in significant improvements in translation quality, and
release of the entire source code as the graphMT package.
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Chapter 2

Background

“He who would learn to fly one day must first learn to stand and walk and run
and climb and dance; one cannot fly into flying.”

— Friedrich Nietzsche

The contents of this chapter are broadly divided into two sections: translation models (§2.1),
which reviews the necessary statistical machine translation (SMT)1 background and contextu-
alizes the problem of low-dimensional context-dependence in translation models; and the parts
on the two primary assumptions we utilize in our low-dimensional hypothesis: the multi-view
assumption (§2.2) and the manifold assumption (§2.3). We avoid entering into a full-blown
MT primer, for which there are excellent resources (Lopez, 2008, Koehn, 2010) that are rec-
ommended if the reader is more interested in the subject.

First, a brief discussion on notation. For strings, x refers to a single lexeme or unit (depending
on the level of granularity, x could be a character, morpheme, word, or phrase), and x refers to
an entire sentence (consisting of at least one unit). In the context of linear algebra, symbolically
we only distinguish between scalars x, vectors x (both row and column), and general-order
tensors X, which include both matrices (second-order tensors) and higher-order tensors. Dot
products between two vectors x and y can be explicitly represented using x · y, otherwise
matrix-matrix and matrix-vector products are represented with adjacent symbols i.e., XY or
Xy. For products between higher-order tensors and vectors, we use the notation in Kolda and
Bader (2009), where the mode of the tensor is specified; see §3.2.2 for additional details, when
tensor notation becomes relevant.

1 We will often alternate between the acronyms SMT and MT to refer to machine translation; almost
exclusively, the predominant approach is statistical.

7



2.1 Translation Models

The goal of MT is to translate a sentence in a source language, denoted f , to a sentence in a
target language, denoted e.2 The sequences of translation decisions used to go from source to
target sentence, which we refer to as a derivation, is denoted with d. Note that there can be
many derivations that transform the same source sentence f into the same target sentence e.
As such, the distribution we are truly interested in modeling is P (e|f), which can be computed
by summing over all derivations:

P (e|f) =

X

{d|(d,f)!e}
P (e,d|f)

where {d|(d,f) ! e} is the set of all derivations that transform a source sentence f into the
target sentence e. Thus, the derivation is treated as a latent variable that must be marginal-
ized. Unfortunately, computing this sum involves exponential complexity (in the source sen-
tence length) for the prevalent translation model formalisms (Brown et al., 1993, Melamed,
2004) and is in fact NP-complete, so most approaches sidestep the issue by treating deriva-
tions as translations.3 The best translation (derivation) conditional on the source sentence is
thus:

arg max

e,d
P (e,d|f)

One way to parameterize the learning procedure of P (e|f) is to adopt a generative model.
A generative model learns the joint probability distribution P (f ,d, e) and then uses Bayes’
theorem:

P (e|f) =

P (f ,d, e)

P (f)

=

P (f ,d|e)P (e)

P (f)

(2.1)

During decoding, which is the application of parameters learned in training to translate new
sentences, the denominator is irrelevant i.e., computing an arg max only depends on the numer-
ator, which consists of two terms: the translation model (P (f ,d|e), TM) and the language

2 The conventional use of f for the source sentence and e for the target sentence (or in general, strings
in the source and target languages) stems from the original experiments that were applied on the Hansard
French-English Canadian parliamentary proceedings.

3 Blunsom and colleagues presented a noticeable exception to this choice, by actually summing over deriva-
tions in the process of learning P (e|f) directly (i.e., a discriminative model). However, in Blunsom et al.
(2008b), the authors crucially do not incorporate language model information, and although it is considered in
Blunsom and Osborne (2008), the authors have to resort to an approximate sampling procedure to make the
approach tractable.

8



model (P (e), LM).4 The TM has several responsibilities: re-order words in the source sen-
tence into an appropriate target order (if necessary), translate the words or word sequences
from the source to the target language, and assign a weight or a score to each translation
hypothesis in the output. Thus, the TM consists of a phrasal inventory or a model of transla-
tional equivalence (Lopez, 2008), and a model to score the numerous translation hypotheses.
The LM is a model of the target language, and re-ranks hypotheses produced by the TM by
scoring on the basis of target language fluency. Since our focus in this section is translation
models, we do not discuss LM learning and inference here.

The decomposition in Eq. 2.1 is also called the noisy channel model5, and was the primary
basis behind the introduction of statistical MT (Brown et al., 1990), after successes in its
application in the speech recognition space (Bahl et al., 1983). Generative models have the
advantage of applying two independent models when translating, which is beneficial if the
errors in each model cancel each other out or if we have a lot more monolingual data (which
the LM uses) than parallel data. Because of the strong conditional independence assumptions,
empirically and theoretically generative models perform well in a “low data” regime (Ng and
Jordan, 2002). In practice however, the classic noisy-channel model is not strictly followed;
for example, it was found that using P (e|f) instead of P (f |e), while theoretically unfounded,
worked empirically as well if not better (Och and Ney, 2002). This observation and others
motivated the combination of previous generative model components (i.e., TM and LM) with
several other information sources e.g., the forward probability P (e|f) to disambiguate the
vast number of translation options available. The relative weights w of these components
are learned in a discriminative fashion as a linear (or log-linear, the only difference being
that a softmax function is applied to the arg max argument in Eq. 2.2) structured prediction
problem:

arg max

e,d
w · �(f , e,d) (2.2)

where �(·) is a feature vector defined over the source, target, and derivation structure. Here,
we have rephrased the translation decision problem in a more general manner by removing
the probabilistic interpretation (although variants, like the log-linear model, retain their prob-
abilistic nature). The discriminative framework allows us to define numerous sparse or dense
overlapping features in the form of the vector �(·), unlike in the generative case where fea-
tures had to abide by strict independence assumptions. A number of different objectives can
be used to learn the weights in Eq. 2.2 e.g., minimum error rate training (MERT, Och, 2003)
or large-margin criteria (Liang et al., 2006, Chiang et al., 2009, inter alia). For a more de-
tailed overview of these algorithms, we refer the reader to Koehn (2010) for MERT and Chiang
(2012) for various large-margin algorithms. In light of the shifting semantics with the move
to discriminative models, we broaden our definition of a translation model beyond just the

4 Note that in the generative framework, we model the reverse probability P (f |e).
5 A term borrowed from information theory.
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reverse probability model P (f |e) to now contain a general translational equivalence model
that is able to score its translation options when conditioned on an input source sentence. In
other words, it is the part of an MT system that learns parameters from a parallel corpus
using a formalism that can generate strings in two different languages simultaneously.

The discussion above operated at the level of sentences. It would be infeasible to actually
learn parameters at this level: a back-of-the-napkin calculation with realistic numbers suffices
to show this case.6 Hence, the actual TMs operate at a much finer granularity, usually at the
level of words or small, multi-word sequences known as phrases.7 The derivation structure d is
thus the collection of translation decisions that yield the target sentence given the source, and
the overall sentence probability is the product of the scores of the individual translation rules
that make up d. We first provide a brief overview of lexical models (§2.1.1), emphasizing the
lack of translational context considered by these models, which provided the main motivation
to move towards phrasal models (§2.1.2). However, phrasal models introduce their own host of
issues, which segues into our discussion of minimal grammars (§2.1.3). The minimal grammars
form the starting point for translation models in Chapters 3 and 4.

2.1.1 Lexical Models

In the beginning, researchers at IBM created a series of lexical translation models (Brown
et al., 1990, 1993), which are collectively dubbed the IBM models. The first two of these
models make use of the following general form8:

P (e|f) = P (m|f)

X

a2[0,l]m
P (a|f , m)

mY

i=1

P (e
i

|f
a

i

) (2.3)

Here, m is the length of the target sentence, l is the length of the source sentence, and a is
the set of alignment variables, which in these models function as the derivation structures
d; just like d, these variables are latent, in that we do not observe their values at all during
training and they must be inferred. The alignments are random variables that, in Eq. 2.3, are
attached to each target word e

i

, 1 < i < m. Each alignment variable can take any value in the
set [0, l], specifying an alignment for each target word to some word in the source sentence,
where the 0th position corresponds to the null alignment (i.e., a target word aligned to null is
an unaligned word).

6 Assuming an average sentence length of 30 words and a vocabulary size on the order of 105, sentence-level
models would result in model sizes on the order of 10150 parameters (sentences), with only a tiny fraction of
such sentences observed in corpora.

7 This definition is at odds with the parsing community’s, where the term is strictly entwined with phrase
structure grammars. In MT, it simply means any contiguous (usually short) sequence of words.

8 The traditional exposition is for P (f |e) from the noisy channel model, but we use P (e|f) instead.
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Eq. 2.3 is an exact decomposition, but is not the only way we can decompose P (e|f). Rather,
the choice of decomposition displays the generative process underlying our lexical model.
In this case, first a length m is chosen for the target sentence, conditional on the source;
then, we decide which positions in f are linked to every position 1 < i < m in the target.
Subsequently, translation decisions P (e

i

|f
a

i

) are conditionally independent of each other given
these alignments, and each word in e is generated from exactly one word in f , as indicated
by the alignment a

i

. Utilizing these latent alignment variables (or more generally, latent
derivation structures) allows us to make far more reasonable conditional assumptions than
otherwise. Instead of assuming that translation decisions are unconditionally independent,
we assume that, conditioned on the alignment information, these decisions are independent.
To deal with the target length m, we assume that P (m|f) is independent of both m and f ;
hence, we can replace it with a small constant ✏ > 0. With these assumptions, most kinds of
alignments are allowed: word dropping, insertion (by aligning a target word to the null token),
and one-to-many links, but many-to-one alignments are not.

IBM Model 1 (M1) makes additional assumptions to Eq. 2.3 in order to to make parameter
estimation more tractable. Specifically, the m alignment decisions are independent of each
other, and the alignment distribution for each alignment link is uniform over all source words
and the null token. Mathematically:

P (a|f , m) =

1

(l + 1)

m

) P (e|f) =

✏

(l + 1)

m

X

a2[0,l]m

mY

i=1

P (e
i

|f
a

i

) (2.4)

While the expectation in Eq. 2.4 is intractable in general as there are (l + 1)

m possible align-
ments, the summation is over terms each of which is a monomial that contains m translation
probabilities. Brown et al. (1993) show that we can write the result as:

✏

(l + 1)

m

X

a2[0,l]m

mY

i=1

P (e
i

|f
a

i

) =

✏

(l + 1)

m

mY

i=1

lX

j=0

P (e
i

|f
j

) (2.5)

As is standard with latent variable models (recall that the alignments are unobserved), expec-
tation maximization (EM, Dempster et al., 1977) for maximizing empirical likelihood is used
to learn the parameters. The basic idea is to use current (or initial) parameter estimates for
the translation probabilities P (e|f) to compute posterior alignment probabilities P (a

i

|e,f),
and then fix these posterior alignments in order to re-estimate the translation probabilities.
Because of the assumptions made, under mild conditions the EM algorithm converges to the
global optimum of the log-likelihood function of Eq. 2.4. IBM Model 2 (M2) is similar to M1,
except the uniform alignment probability assumption is relaxed. Specifically, we assume that
the probability of an individual alignment a

i

is not uniform and depends on the position i and
the target length m as well as the source length l as before. While we can use the same trick
as in Eq. 2.5, EM no longer recovers the global optimum.
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Subsequent IBM models are based on a different form of Eq. 2.3, where phenomena like word
fertility (target words can be aligned to multiple source words at the same time, thereby
allowing many-to-one alignments) and distortion (to handle re-ordering effects) are incorpo-
rated into the generative process. These elaborations come at a cost however: learning via EM
is rife with local minima (although initializing parameters with simpler models like M1 and M2
help), and the trick in Eq. 2.5 no longer applies, which means sampling (over high probability
alignments) is utilized in lieu of exhaustive computation. More importantly, none of these
additions masks the fact that these models are fundamentally limited in their use of context.
The translation distributions P (e|f) do not take into account the words surrounding f at all,
and this severe limitation was the main motivation for the move to phrasal models (§2.1.2).
Nonetheless, alignment information (specifically, the Viterbi i.e., most likely alignment for a
sentence pair) is very important, and most phrase extraction approaches for building phrasal
inventories bootstrap from the word alignments. The lexical probabilities P (e|f) and P (f |e)
computed over lexical items in translation rules are also fundamental features in practically
all modern MT systems.

2.1.2 Phrasal Models

Phrasal models overcome the deficiencies of lexical models by using phrases as the basic unit
in the model. By considering longer translation units, these models incorporate limited local
context dependencies. For example, the German word fragen can be translated in both noun
(“question”) or verb (“to ask”) form. If we instead considered two-word phrases as the basic
translation unit, we may find instances of diese fragen (“these questions”). In this case, the
presence of a determiner disambiguates the noun and verbal forms.

For a sentence f with length l, the number of possible phrasal segmentations is exponential
in l, so how do we extract the “right” translation units from this sentence? Unfortunately,
direct phrasal alignment is a very difficult task. Marcu and Wong (2002) first proposed a
phrasal alignment model that was a generalization of the lexical models in §2.1.1, but because
of the trade-offs and approximations involved, it was not practical. In his thesis (DeNero,
2010), DeNero showed a number of drawbacks with direct phrasal models. First, learning via
EM tends to the degenerate solution, because of the existence of two latent variables: the
segmentation of source and target sentences into phrases, and the alignment of these phrases
across the two languages. While competing alignments cannot all be correct, competing seg-
mentations can, which leads EM to prefer longer phrases during segmentation in an effort to
maximize likelihood. Furthermore, inference (finding the most likely alignment) is NP-hard.
Naturally, there are ways to bias EM away from preferring longer phrases (by imposing suit-
able priors) and restricted classes of phrase alignment models where polynomial-time inference
procedures do exist, but the most practical and empirically successful method of extracting
phrases has been to bootstrap from word alignments. Phrasal inventories are bootstrapped
from word alignments in different ways depending on the formalization.
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1

diese fragen werden ihn mehr nach katzen fragen lassen

these questions will make him ask about cats more

Figure 2.1: German-English sentence pair and word alignments. Overlapping alignments are colored
differently for demonstration purposes.

In the following, we briefly review the three primary types of translation models and the phrase
extraction process each type entails. The discussion on syntax-based translation is primarily
to provide background on the distinction between minimal and composed grammars, but in
this thesis, we utilize the phrase-based and hierarchical phrase-based translation formalisms
only. The examples we give will be based on the German-English sentence pair and word
alignments in Fig. 2.1.
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Figure 2.2: An alignment matrix for the sentence pair in Fig. 2.1. Examples of consistent phrase
pairs are outlined in black.

13



Phrase-based Translation

Phrase-based translation (PBT, Koehn et al., 2003, Och and Ney, 2004) models are instanti-
ations of weighted finite-state transducers (Lopez, 2008). Translational equivalence between
two languages is modeled using pairs of phrases in the source and target language that have
the same meaning. Using a heuristic, phrases are extracted from a sentence pair by main-
taining consistency with the word alignments. Fig. 2.2 presents example word alignments for
the sentence pair in Fig. 2.1, represented as an alignment matrix. Consistent phrase pairs
are those that do not have alignment links directly adjacent to the box surrounding a phrase
pair in the alignment matrix (diagonal adjacencies are fine). The black boxes that delineate
several example phrase pairs in Fig. 2.2 are consistent phrase pairs. An example phrase pair
is “diese fragen ||| these questions”. Note that consistent phrase pairs can be nested (as the
example phrase pair is), and during phrase extraction all nested pairs are extracted too. This
decision results in an enormous number of phrase pairs extracted, and so limits are set on
their length. Phrase-based translation also does not directly model reordering phenomena,
and often a separate reordering model is employed for this purpose.

Syntax-based Translation

Syntax-based translation9 (SBT, Galley et al., 2004, Zollmann and Venugopal, 2006) mod-
els are usually instantiations of weighted synchronous context-free grammars. Translational
equivalence between two languages is modeled using a synchronous grammar that simulta-
neously generates source and target sentences and the correspondence between them. Local
translation decisions are made and aggregated in a syntactically consistent way. There are
a number of different approaches to SBT, depending on whether syntax is used only on the
source side (tree-to-string, or T2S translation), only on the target side (string-to-tree, or S2T
translation), or one both sides (tree-to-tree, or T2T translation). These approaches vary in
terms of the basic translation units considered and the phrase extraction process. For this
discussion, we restrict ourselves to T2S translation, specifically extended tree-to-string trans-
ducers (Graehl et al., 2008), where we have translation rules with tree fragments on the source
side, and strings on the target side. Figure 2.3 gives several examples, which we explain
below.

Galley et al. (2004) presented an elegant heuristic that extracts these kinds of syntax-based
translation rules from word alignments and a parallel corpus. The basic idea is to attach the
word-aligned target side as additional nodes in the source parse tree, by introducing edges
between the leaf nodes (source words) in the tree and the target words. The result is an
alignment graph. From the alignment graph, a set of frontier nodes are identified; these are
nodes with the property that the span on the target side in the alignment graph is exclusive

9 Some of this discussion presupposes a basic knowledge of syntactic parsing.
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i.e., it does not intersect with spans from nodes other than parent and child nodes. From
these frontier nodes, a set of minimal rules are extracted that have lexical (pre-terminal)
and/or internal (non-terminal) nodes on the target side, and a tree fragment on the source-
side. These rules are minimal in the sense that they cannot be decomposed into simpler rules
induced by the same alignment graph. Both Galley et al. (2004) and Huang et al. (2006) stress
the importance of multi-level rules i.e., tree fragments on the source side that also include tree
fragments of parent nodes (see Figures 2.3a and 2.3b), to provide a narrow form of context
dependence.

ADVP

RBR

mehr

NP

x1

(a) A one-level T2S rule.

||| x1 more

VP

NP

x2

ADVP

RBR

mehr

NP

x1

VB

fragen

(b) A multi-level T2s rule.

||| x2 ask x1 more

VP

NP

PRP

ihn

ADVP

mehr nach katzen

VB

fragen

(c) A composed rule, created by composing the one level-rule with its parent rule.

||| him ask about cats more

Figure 2.3: Examples of tree-to-string rules of the type used in Galley et al. (2004, 2006) and Huang
et al. (2006). The part-of-speech tags may not be what a German parser would output, but are the
English equivalents.

Follow-up work (Galley et al., 2006) found that in practice, “context-rich” syntactic models do
better. The starting point of these models is a minimal explanation for a sentence pair, as in
Galley et al. (2004); however, they subsequently “acquire larger rules that crucially condition
on more syntactic context” (emphasis added). These larger rules are called composed rules,
and they result from the composition of two or more minimal rules (Fig. 2.3c). Composed rules
are different from multi-level rules in that we replace tree fragments on the source side that are
denoted with non-terminals (NTs, variables that describe gaps in which other translation
rules can fit) with their actual realizations from the training corpus. With these rules, there
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are multiple synchronous trees consistent with the alignments for a given sentence pair, and
thus the total number of applicable rules can be combinatorially larger than if we just consider
the set of rules that cannot be formed from other rules, namely the minimal rules. The same
reasoning also applies to the PBT models that consider nested, consistent phrase pairs. In
SBT, the addition of composed rules in the grammar results in a dramatic improvement in
translation quality, but comes at a cost: the grammar also increases more than 60 times in
size!

While syntax-based models are appealing to the computational linguist in all of us and can
model relatively long-range dependencies and reordering phenomena, there are numerous
downsides which have precluded the widespread adoption of such models in MT. Firstly, a
good parser is often a necessary prerequisite, lest parsing errors propagate into translation
errors; good parsers tend to require lots of Treebank-style training data10, which is hard to
obtain for many of the world’s languages. Furthermore, the introduction of non-terminal cat-
egories from syntax like NP and VP results in additional data sparseness issues, and more
importantly, these category constraints may not be consequential or even make sense for the
purposes of translation.

Hierarchical Phrase-based Translation

Hierarchical phrase-based translation (HPBT, Chiang, 2007), also known as “Hiero”, occupies
a middle-ground between the PBT and SBT schemes. While formally a context-free grammar,
HPBT borrows the hierarchical structure from this formalism but does not necessarily adhere
to any syntactic constraints. Most noticeably, the NT categories that were so prevalent in SBT
have been discarded and a single NT category X is used (in addition to S, the root symbol).
The hierarchical nature of the model addresses the shortcomings of PBT models by allowing
the modeling of discontinuous spans and longer-range reordering patterns, and the translation
units only have a single NT category into which we can substitute any other rule, avoiding the
data sparseness issues with SBT. Unlike SBT, HPBT does not rely on any external syntactic
resources like a parser; rules are extracted directly from word alignments using the consistent
phrase pairs from PBT. Rule generation can be understood as a ‘subtraction’ of a consistent
phrase pair from a larger phrase pair (i.e., removing nested consistent phrase pairs from larger
ones). As an example, from the top-left box in Fig. 2.2 we can extract the following Hiero
rules11 (among others): “diese fragen werden ||| these questions will”, “diese X1 ||| these X1”,
and “X1 fragen X2 ||| X1 questions X2”. In HPBT, NTs are aligned across source and target
sides, and this is indicated by the superscript notation. Lastly, two glue rules where the left-
hand side NT is the root symbol S are added, allowing the grammar to derive sentence pairs
by left-to-right concatenation of translation rules.

10 Sentences annotated with their phrase structure trees; see Marcus et al. (1993).
11 In these rules, we omit the left-hand side NT, which is X.
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2.1.3 Minimal Grammars

The discussion of the prevalent formalizations points to a common issue: in the process of
building a translation inventory from word alignments, the translation model sizes grow sig-
nificantly. In PBT, we extract all phrase pairs, minimal or composed (i.e., nested consistent
phrase pairs) consistent with the alignments. In SBT, an algorithm to extract minimal trans-
lation rules was initially proposed, but it was found that composing rules does better, albeit
by drastically increasing grammar size. In HPBT the phrase extraction process is similar to
PBT and we often need to resort to thresholds and other restrictions to avoid a model blow-up.
Basically, all of these models incorporate a limited form of context dependence by including
larger rules in their inventories; larger rules lead to larger models, which result in computa-
tional (more translation options to consider during decoding) and statistical (more parameters
to estimate) tractability concerns. Furthermore, the way these rules are scored is still rela-
tively simplistic: apart from the lexical features for a phrase pair (§2.1.1), the convention is to
include the log relative frequencies of rule occurrences in a parallel corpus (in both directions)
as a feature. The relative frequency estimates are aggregated, corpus-level statistics and are
absolutely invariant to the context in which a phrase is actually being translated. Perhaps a
better avenue of exploration is to revert to minimal grammars, and instead incorporate context
through scoring methods that are context-dependent.

Utilizing minimal grammars instead of the traditional, composed ones allows us to explore
the transition from minimal to composed grammars by using auxiliary models that score
translation options using context. Rules that are more context-sensitive are created without
increasing the overall size of the phrasal inventory, but instead by holding this information
in the auxiliary model. For each sentence in the training data we extract the minimal set of
synchronous rules consistent with the word alignments; then, rule types across all sentence
pairs are combined to form a minimal grammar. To extract a set of minimal rules, we use the
linear-time extraction algorithm of Zhang et al. (2008). We give a rough description of their
method below, and refer the reader to the original paper for additional details.

The algorithm returns a complete minimal derivation tree for each word-aligned sentence pair,
and generalizes an approach for finding all common intervals (pairs of phrases such that no
word pair in the alignment links a word inside the phrase to a word outside the phrase) between
two permutations (Uno and Yagiura, 2000) to sequences with many-to-many alignment links
between the two sides, as in word alignment. The key idea is to encode all phrase pairs of
a sentence alignment in a tree of size proportional to the source sentence length, which they
call the normalized decomposition tree. Each node corresponds to a phrase pair, with larger
phrase spans represented by higher nodes in the tree. Constructing the tree is analogous to
finding common intervals in two permutations, a property that they leverage to propose a
linear-time algorithm for tree extraction. Converting the tree to a set of minimal rules for the
sentence pair is straightforward, by replacing nodes corresponding to spans with lexical items
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or NTs in a bottom-up manner.12

2.1.4 Related Work

There has been a scattering of work that addresses the limitations of phrasal models by concen-
trating on incorporating context to improve upon the context-independent relative frequency
features. The most significant line of work in this regard is n-gram translation (Mariño et al.,
2006, Durrani et al., 2011), which uses Markov models to model context in the form of a his-
tory. Thus, while no new rules are added to the translation inventory, additional parameters
in the form of an auxiliary Markov model dictate the dynamics of translation. The n-gram
framework allows the use of heuristic smoothing techniques from language modeling (Chen and
Goodman, 1999) to indirectly capture context low-dimensionally, and while more principled
approaches based on Pitman-Yor priors achieve good performance (Feng and Cohn, 2013), the
n-gram methods are still limited by their unidirectional (i.e, left-to-right) notion of context
and their reliance on smoothing as a proxy to reasoning about the effect of context dimension-
ality on translation. Except for Vaswani et al. (2011), who leverage the n-gram translation
framework to explore this transition from minimal to composed grammars in the setting of
T2S translation, this line of work has broadly ignored the fact that context is being doubly
modeled in some sense, both in large, composed rules as well as through a Markov model. This
decision often limits the extent to which context can be considered for tractability reasons.
Naturally, one option is to combine the explicit low-dimensional hypothesis with the n-gram
translation model, and learn transition parameters in the latent, recovered space. This com-
bination introduces the idea of structured prediction to our low-dimensional hypothesis, and
other variants can also be explored.

The usage of word-sense disambiguation techniques to compute context-dependent translation
scores has also been explored, and we review this literature in §4.3.

2.2 Multi-view Assumption

What assumptions will our auxiliary models for context take? The standard MT models
described in §2.1.2 make use of larger rules to incorporate context; we argue that this decision
treats context high-dimensionally. When including surrounding context to make a larger
rule, only the word identity information is used, and there is no notion of how similar two
contexts or translation rules are. For example, the translation rules “diese fragen ||| these
questions” and “diese anfragen ||| these requests” are as similar (or distant) to each other

12 We filtered rules with arity 3 and above (i.e., containing more than 3 NTs on the RHS). While synchronous
grammars are perfectly capable of handling such cases, computation quickly becomes intractable with higher
arity rules.
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according to a phrasal model as the pairs “diese fragen ||| these questions” and “diese antworten
||| these answers”. Even if a rule is a substring of another rule e.g., “fragen |||| questions”, it
is not any more similar to “diese fragen ||| these questions” than other translation rules. In
other words, if we were to embed our translation rules in RP , where P is the number of rules
in our inventory, then all rules would be equally distant from each other as they form vertices
of a standard P � 1-dimensional simplex. This kind of encoding is also known as a one-hot
encoding, because each translation rule is represented as a P -dimensional vector with exactly
one entry in the vector equal to 1 (at a position indicating the identity of the translation rule).
The dimensionality of the space is equal to the number of translation rules in our inventory,
which is problematic if we want to incorporate some notion of rule similarity in our model.
As is well documented in the machine learning literature, the curse of dimensionality (Bishop,
2006) implies that models trained in such high-dimensional spaces are prone to overfitting,
not to mention the computational issues (although sparse representations of high-dimensional
spaces help considerably in this regard).

One of the central points of this thesis is that the effect of context on translation is low-
dimensional. The question then shifts to how we can recover appropriate low-dimensional
spaces from the high-dimensional, one-hot space. One possible way to achieve this goal is to use
the multi-view assumption, which originates from the semi-supervised learning literature
(Yarowsky, 1995, Blum and Mitchell, 1998). Informally, the assumption states that we can
partition the representation of an example (represented as a vector of real values) into two
(or potentially more) different views, and that either view of the example is sufficient to make
accurate predictions.13 Then, a multi-view learning algorithm forces agreement between the
two predictors that have been trained on separate splits of the data, with the intuition being
that the complexity of the learning problem should be reduced by eliminating hypotheses from
each view that do not agree with each other. A formal treatment of the assumption depends
on the analysis used, but here we state the regret-based formulation of Kakade and Foster
(2007):

L(f (1)
) � L(f)  ✏

L(f (2)
) � L(f)  ✏

where L(·) is the (expected) squared loss function which takes a predictor as an argument,
f (⌫) is the best linear predictor based on view ⌫ 2 {1, 2}, and f is the best linear predictor
based on both both views. The assumption implies that (only on average) the predictors must
agree.

Kakade and Foster (2007) showed that, assuming second order information (moments) are
13 This form of the assumption is known as the redundancy assumption, and is used in Kakade and Foster

(2007). Ando and Zhang (2007) introduce a conditional independence-based assumption, and Foster et al.
(2008) showed that a weaker form of this assumption and the redundancy assumption are, for the purposes of
dimensionality reduction and prediction, equivalent.
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known, a technique known as canonical correlations analysis (CCA, Hotelling, 1936) can
be applied to the two views to recover a subspace for supervised learning. In a nutshell, CCA
recovers a pair of projection matrices (i.e., two sets of basis vectors) that project each view
into a shared, latent space, such that the correlations between the projected views is mutually
maximized. Uncorrelated noise in each view is removed, and the procedure recovers directions
in which the two views agree. In the regression case, the norm of the linear predictor f should
be computed in this basis in order to regularize the regression; doing so allows us to identify
linear predictors that have large weights in directions that are less correlated with the other
view, as these predictors have larger norms. Foster et al. (2008) followed up and showed that
under several different assumptions, dimensionality reduction via truncated (rank-reduced)
CCA reduces sample complexity for supervised learning problems if the predictor is learned
in the recovered latent space. Very little predictive information is lost by operating in this
space: a small amount of bias is introduced at the expense of significant variance reduction.
They also show that, under certain conditions, the best linear predictor that utilizes both
views relies on the concatenation of the projected views in the hidden subspace; this optimal
dimensionality reduction cannot be improved upon without additional assumptions. CCA is
thus an important technique that we will use to recover the low-dimensional subspaces for
context and translation rules, and it is reviewed in more detail below.

2.2.1 Canonical Correlations Analysis

We are given n instances or training examples. Each instance x

i

is represented as a d-
dimensional vector and belongs to a class h 2 [1, P ], where P is the total number of classes
(responses). In our case, the total number of classes is the number of translation rules in the
model, and each instance is a source phrase occurrence in the corpus. Each source phrase is
represented by d features extracted from surrounding source words in the sentence. Hence,
the original data matrix is Z 2 Rn⇥d. The multi-view assumption says that we can split the n
d-dimensional vectors into two views of length d1 and d2 respectively (i.e., d1+d2 = d), result-
ing in X 2 Rn⇥d1 and Y 2 Rn⇥d2 . For a desired rank k < min{d1, d2}, we compute the CCA
between X and Y , resulting in a pair of projection matrices A 2 Rd1⇥k and B 2 Rd2⇥k.

The objective of CCA is to find basis vectors (which form the columns of matrices A and B)
such that the correlation ⇢ between projections of variables or instances onto these vectors
is mutually maximized. The first column in the matrices A and B are the directions that
maximize correlation across all datapoints. Subsequent columns in A (resp. B) have the
implicit constraint that their projections are in orthogonal subspaces to the column space
of the partially-constructed A (B) matrix, otherwise the previous directions would not be
the ones that maximize correlation. Expressing this objective mathematically, we solve the
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following optimization problem:

max ⇢ = max

A,B

corr(XA, Y B)

= max

A,B

(XA)

T

(Y B)

kXAkkY Bk

= max

A,B

ATXTY Bp
ATXTXABTY TY B

(2.6)

= max

A,B

ATCov(X, Y )Bp
ATVar(X)ABTVar(Y )B

(2.7)

= max ATCov(X, Y )B (2.8)

where in lines 2.6 and 2.7 we assume the data matrices are mean-centered. Note that by the ar-
guments above, the columns in the matrix XA are orthogonal, and similarly with Y B. In line
2.8, we make use of the property that the objective function is scale invariant, which can be eas-
ily verified.14 Thus, ATVar(X)A and BTVar(Y )B can be set to the identity matrix since XA
and Y B consist of orthogonal columns, obviating the need for the denominator. Subsequently
for shorthand, we use C

XX

for Var(X), C
Y Y

for Var(Y ), and C
XY

for Cov(X, Y ).

Intuition

Before discussing the various ways to solve this optimization problem, an intuition of the
CCA objective and what exactly it computes, especially in relation to principal components
analysis (PCA, Pearson, 1901) and least-squares regression, is presented (Fig. 2.4). In PCA,
the aim is to compute a dimension-reduced version of the data matrix X, which is originally of
dimension d. A reasonable way to achieve this goal is to find the vectors or directions in which
the data maximally varies i.e., the variance of the data is highest, and truncate below a certain
number of directions (dimensions) because they do not contain much information of interest.
These directions, which turn out to be orthogonal to each other, are known as the principal
components.15 Using the complete set of d principal components will perfectly reconstruct
X, and using k < d principal components reconstructs the data while minimizing the total
squared reconstruction error (out of all sets of k linearly independent vectors). Figure 2.4a
presents a two-dimensional example with two examples x1 and x2, and principal components
P1 and P2. Note that the principal components lie in the same space as the data X; the data
is used to compute the principal components, which in turn is used to provide a representation
for the data.

In linear regression (Fig. 2.4b), the dependent variable y (in green) is not in the data plane,
14 Indeed, scaling should not affect the angle between two vectors, and the cosine of the angle is the correlation.
15 The principal components correspond to the eigenvectors of the data covariance matrix XTX.
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(a) Principal Components Analysis.
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(b) Linear Regression.
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XY
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vy vxe

(c) Canonical Correlations Analysis.

Figure 2.4: A pictorial comparison between PCA, linear regression, and CCA. Intuitively, CCA can
be thought of as PCA where each space has a dependent variable from the other space, as in regression.
The correlation between vectors v

x

and v

y

is maximized.

and unless it is in the plane there will always be an error e when using the space of predictors
X to construct y. y is perpendicularly projected onto the data space, and a weighted linear
combination of the data is used to reconstruct the projection. In CCA (Fig. 2.4c), the depen-
dent variable resides outside the data plane as in regression, except this time there are two
sets of variables that predict each other simultaneously. Specifically, v

x

and v

y

are a pair of
canonical correlations; each canonical correlation is a linear combination of the variables
in the respective data space, as in the case of linear regression. So for the data space X, v

y

is
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akin to y in linear regression, and v

x

is equivalent to y’ (and similarly for the Y space). Note
that v

x

and v

y

are not orthogonal, but are extracted so as to minimize the angle between
them (i.e., maximize the correlation). After finding the first pair of canonical correlations, the
next pair v

x,2 and v

y,2 is found such that v

x,2 is orthogonal to v

x

and v

y,2 is orthogonal to
v

y

. We repeat the process to find the k canonical correlations.

Optimization

There are a number of ways to solve the objective in Eq. 2.8. The first and most direct
method is to re-formulate the objective function by adding constraints using the method of
Lagrange multipliers, with the constraints dictating the scaling of the vectors (since the original
objective function is scale invariant). Hardoon et al. (2004) present a detailed derivation
of the solution using this approach, where it is shown to be equivalent to the solution of
the generalized eigenvalue problem.16 Luckily, the generalized eigenvalue problem can be
converted into a symmetric eigenvalue problem in this case, and a standard algorithm for
computing eigendecompositions of symmetric matrices can be used to recover the canonical
directions.

In general, an interesting trick is that we never need to explicitly optimize Eq. 2.8 (Press, 2011).
First, note that in addition to the columns of XA and Y B being orthogonal to each other, they
are also cross-orthogonal i.e., ATXTY B 2 Rk⇥k is a diagonal matrix. This property is also
known as bi-orthogonality. In other words, the correlation between the ith column in XA
and any other column j, j 6= i in Y B is zero. Using proof by contradiction, if the correlation
were not zero then an appropriately weighted linear combination of the ith and jth columns in
Y B would have a higher correlation with the ith column of XA. Next, by counting arguments
we can show that any construction of the projection matrices A and B that satisfy the bi-
orthogonality property will produce the canonical correlations. For the simple case where
d1 = d2 and with no column degeneracies in the data (full rank), there are 2k2 parameters
in A and B. The conditions ATC

XX

A = I and BTC
Y Y

B = I impose k(k + 1)/2 constraints
each, since they are symmetric matrices. The cross-orthogonal constraint that ATXTY B be
diagonal imposes k2�k constraints, since the other elements of this matrix are unconstrained.
Hence, the sum of the constraints equals the number of parameters (degrees of freedom),
meaning there can only be countable, isolated solutions.

In the more general case, the constraints alone may not uniquely specify a solution but the
largest correlations can be selected using a singular value decomposition (SVD, Golub and
Van Loan, 1996). A rank-k SVD is a factorization of a matrix W 2 Rn⇥m into three component
matrices: W ⇡ U⌃V T , where U 2 Rn⇥k and U 2 Rm⇥k are orthogonal projection matrices

16 The generalized eigenvalue problem is the problem of finding vectors v that obey Av = �Bv for matrices
A and B and � is some scalar and must obey det(A � �B) = 0. Compare this formulation to the standard
eigenvalue problem, where vectors v obey Av = �v.
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that contain the left and right singular vectors, and ⌃ 2 Rk⇥k is a diagonal matrix that
contains the singular values. The SVD is used for an immense variety of applications (from
computing the pseudoinverse of a matrix to solving homogeneous linear equations), but in
our case the rank-k SVD minimizes the Frobenius norm between the original matrix and
the low-rank reconstruction17, and is thus used to recover low-rank matrices from full-rank
ones.

Since any pair of matrices A, B that satisfy the bi-orthogonality property recovers the canonical
correlations, there are a number of options at our disposal:

• Björck and Golub (1973) suggest first using a QR decomposition on the data matrices:
X = Q

x

R
x

, Y = Q
y

R
y

. The Q matrices are orthogonal and thus provide an orthonormal
basis, while the R matrices are upper-triangular. Then, SVD is used to compute an
orthonormal basis for the cross-product space: QT

x

Q
y

= U⌃V T . We can recover A and
B as A = R�1

x

U, B = R�1
y

V , which is easily computable through back-substitution
since the R matrices are upper triangular.

• The main purpose of the QR step is to obtain orthogonal bases, with a secondary purpose
being that the transform into this basis is easily invertible (to recover A and B). SVD
also satisfies these criteria, so we can replace the QR decomposition step with an SVD-
based one: X = U

x

⌃

x

V T

x

, Y = U
y

⌃

y

V T

y

. The second SVD is computed on the cross-
product space, as before: UT

x

U
y

= U⌃V T , and A and B can be easily recovered: A =

V
x

⌃

�1
x

U, B = V
y

⌃

�1
y

V . With this approach, we also get an idea of the allocation of
variance as in PCA18 (Press, 2011).

• The QR and SVD steps de-correlate or “whiten” the data, which can also be achieved
by defining a change of basis using the square root inverse (SRI) operation. Since the
aim of any whitening transformation is to transform the data covariance matrix into the
identity matrix, multiplying the data matrices X and Y by the SRI of the covariance
matrix19 will achieve this goal. In this approach, an SVD of the cross-product space is
computed after a change in basis has been applied to the space:

C
�1
2

XX

C
XY

C
�1
2

Y Y

= U⌃V T (2.9)

following which we apply the change of basis to the result to yield matrices A and B:

A = C
�1
2

XX

U, B = C
�1
2

Y Y

V . The approach was first used in Mardia et al. (1979), and it is
straightforward to show that these matrices satisfy the bi-orthogonality property.

17 This result is known as the Eckart-Young theorem.
18 The notion of allocation of variance is not exactly the same as PCA, but since the canonical correlations

are orthogonal, they also partition the variance like the principal components do.
19 The SRI of the covariance matrix is well-defined: the covariance matrix is positive-definite, therefore its

square root consists of real values and is invertible.
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While Chs. 3 and 4 both make use of the multi-view assumption and CCA, in Ch. 3 we simply
the computation by assuming C

XX

= I and C
Y Y

= I, which means the CCA computation
boils down to SVD of the cross-product space. In Ch. 4, we investigate several approximations
to C

XX

and C
Y Y

(§4.1.1).

Related Approaches

Because of the bi-orthogonality property, CCA is an expensive computational operation. The
QR or SVD steps on the data matrix X (or Y ) can be intractable, especially if these matrices
have very large dimension d1 (resp. d2).20 Similarly, whitening the data matrix X (or Y )
requires the inversion of a d1 ⇥ d1 (or d2 ⇥ d2) matrix. As a result, a number of large-scale
approaches towards CCA have been introduced. Lu and Foster (2014) presented an iterative
approach to computing CCA that is specifically optimized for large, sparse datasets, where the
computation reduces to a sequence of fast least squares solutions on relatively small matrices.
For extremely large problems, an approximate least squares solver that works in a manner
similar to principal component regression is used in place of the exact one. There has also been
a line of work that applies random matrix methods (Halko et al., 2011) to the CCA problem.
Avron et al. (2013) apply a transformation known as a Walsh-Hadamard Transform to the data
matrices prior to computing CCA. Informally, the transform “spreads” the information in the
data equally among the input rows, which allows these matrices to be amenable to uniform row
sampling. Walsh-Hadamard matrices are cheaper to store and applying them is faster than
multiplying by dense, Gaussian random matrices. This transform was also used by Lopez-Paz
et al. (2014) for fast, scalable non-linear (kernelized) CCA. Mineiro and Karampatziakis (2014)
present another randomized algorithm, which uses a randomized range finder to iteratively
compute the (orthogonal) column space or range of the data matrices X and Y , after which
a Cholesky decomposition and SVD is used to find the canonical correlations.

Partial Least Squares (PLS, Rosipal and Krämer, 2006) is a technique used to model sets of
multivariate data, and in particular, orthonormalized PLS is a variant which explicitly con-
siders variance in one of the views. In other words, in Eq. 2.8 we constrain only one view’s
covariance to be the identity matrix, and leave the other view unconstrained. The relationship
between orthonormalized PLS and CCA was explored in Sun et al. (2008), where they build
on top of the relationship between CCA and Fisher Linear Discriminant Analysis to show
that the projection directions (i.e., canonical correlations) learned by CCA and orthonormal-
ized PLS differ only by a rotation, which is not problematic since rotation operations are
isometric. The advantage of using the least squares formulation and correcting for the rota-
tion afterwards is that sparsity-inducing, `1-regularized algorithms can be applied to learn the
canonical correlations, which is not trivial to do in the standard formulation of CCA.

20 QR decomposition on an n⇥ d1 matrix is O(nd21), and SVD is O(min(nd21, N2d1)) (Golub and Van Loan,
1996).
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Moving away from linear algebraic approaches for revealing latent subspaces, Ghahramani
(1996) draws an interesting connection between single-layer linear neural networks and CCA. In
general, neural networks are a powerful model family that, due to the non-linearities involved,
can accurately model a large number of phenomena given adequate data; for a brief primer,
see Bishop (2006). When modeling the relationship between input and output variables, a
single layer network inserts a hidden layer between the variables. The hidden layer acts as
a bottleneck, in that all inputs must go through this layer and then to the output layer in a
two-step process. Consider such a network which takes x

i

2 Rd1 as input and predicts y
i

2 Rd2

as the output. Let the hidden layer contain k hidden units such that k < min{d1, d2}. The
relationship between input and output variables can then be written as ˆ

y

i

= BAT

x

i

, where
A 2 Rd1⇥k and B 2 Rd2⇥k are the projection matrices as in CCA. Ghahramani showed that
if we train the network to minimize the Mahalanobis distance (using the covariance in Y as
the covariance matrix) between the prediction ˆ

y

i

and the true output y
i

, then the objective is
minimized when using the left and right singular vectors of Eq. 2.9 with the largest singular
value, which is exactly a solution to CCA. Note that the analysis is specific to the case where
no non-linear activation functions are used, and these activation functions are one of the ways
in which neural networks shine, as it allows them to approximate complex functions reasonably
accurately. Thus, adding these non-linearities and training networks to minimize Mahalanobis
distance is equivalent to a non-linear variant of CCA.

Ghahramani (1996) viewed CCA in a similar manner to Sun et al. (2008) by treating the
second data space Y as a dependent variable to be predicted, and suitably modifying other
aspects of the problem. A more direct approach is to actually design a deep (multi-layer)
neural network that mimics CCA (Andrew et al., 2013), where representations of the two
views are computed by passing the inputs through multiple non-linear layers. The objective is
to maximize the correlation of the outputs from each of the stacked layers, which is optimized
using backpropagation. In general, neural networks should be understood as an alternative
technique for learning low-dimensional representations of high-dimensional spaces, but without
the consistency guarantees provided by multi-view learning-oriented approaches. Interestingly,
neural network optimization is inherently online in that it is amenable to gradient descent-
based procedures; these procedures can also be more scalable in large-scale data scenarios.
Thus, optimization techniques from neural networks can also be used for large-scale CCA,
which is the idea that several of the discussed works use (Sun et al., 2008, Lu and Foster,
2014).

2.3 Manifold Assumption

In §2.2, we discussed the multi-view assumption and showed how it can be used to recover
a low-dimensional subspace of interest. In order to evaluate our low-dimensional context-
dependent translation hypothesis in the limit, we need to resort to another assumption that
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enables a shift to the semi-supervised learning domain, where a large number of examples do
not have label information: the manifold assumption.

Informally, the manifold assumption states that the data of interest lie approximately on
a manifold Mk of lower dimension k than the ambient space in which the data nominally
reside, Rd.21 A manifold is a topological space that is locally Euclidean near each point, but
globally may be highly non-Euclidean. A classic example is the surface of a sphere, which
is non-Euclidean but in small localities may be approximated as Euclidean. More formally,
the assumption states that the support of the marginal probability distribution of the data
(computed by summing over the labels in the joint probability distribution22 over data and
labels) is on some low-dimensional manifold (compared to the ambient Euclidean space).

The motivation behind this assumption comes from the intuition that although natural data in
its surface form resides in a high-dimensional space, the data is often generated by systems with
much fewer underlying degrees of freedom and therefore have lower intrinsic dimensionality
(Niyogi, 2013). In fact, PCA also makes use of a special case of the manifold assumption,
namely that the data manifold consists of a single ellipsoid. Thus, the manifold assumption
can also be seen as relaxing some of the stricter conditions imposed when we use the multi-
view assumption and CCA. A related assumption that applies more to the distribution over
labels is the smoothness assumption: the underlying target function over the manifold, which
in this case is the distribution over labels conditional on the data, is smooth with respect to
the underlying manifold. In other words, points on the data manifold that are connected via a
path (or paths) through high density regions of the manifold are likely to have the same label
(or very similar labels). The two assumptions work together and allow algorithms to take
advantage of the structure of the data when inferring labels for unlabeled points, and in order
to learn functions that respect the manifold assumption we impose the notion of smoothness
over the manifold.

Fig. 2.5 provides a tangible example with two classes, underlining why the manifold assumption
matters. The red points belong to one class, the blue points belong to the other, and the aim
is to infer the most likely class of the black point (y). In Fig. 2.5a, we consider only the
ambient dimension, and using the Euclidean distance, y is labeled red. In the context of
manifolds, this distance is also known as the chordal distance. However by considering the
manifold in Fig. 2.5b, we find that the red point is further away to y than the blue point when
restricting ourselves to paths on the manifold. With the manifold assumption the geodesic
distance i.e., the distance between two points along a path on the manifold, is the metric we
use to determine similarity between points, and not the chordal distance.

It should be emphasized that there are two major forms of dimensionality reduction in the
graph-based semi-supervised setting: the first is the embedding of each high-dimensional ex-

21 This construction is technically known as an embedded manifold.
22 To make this joint distribution concrete, in the case of MT the data consists of source phrases, and the

labels are their corresponding translations.
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(a) Chordal distance in the ambient space.
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y

z

kx � yk2 < ky � zk2

(b) Geodesic distance on the manifold.

Figure 2.5: A tangible example showing that, assuming the manifold assumption is true, taking into
account the geodesic distance and the structure of the manifold (Fig. 2.5b vs. Fig. 2.5a) is crucial.

ample in a graph, where the example is described purely in terms of its relations with its
nearest neighbors. Inference is performed solely by taking into account the graph structure,
and the actual position of the example in the ambient, Euclidean space is irrelevant.23 The
second is a dimensionality reduction step that can be applied to the ambient, Euclidean space
prior to estimation of the manifold; a variety of standard dimensionality reduction techniques
that operate in Euclidean space can be used, and we present results for one approach in
§5.2.5.

In the following sections, we first review the basics of Riemannian manifolds i.e., the specific
class of manifolds we consider (§2.3.1). We then introduce an important quantity defined for
continuous manifolds, the Laplacian (§2.3.2), as well as its discrete counterpart, the graph
Laplacian (§2.3.3). Intuitively, the Laplacian dictates how functions evolve over the graph by
taking into account its structure. We conclude by discussing how inference over the graph
respects the structure presented by the Laplacian (§2.3.4).

2.3.1 Riemannian Manifolds

Manifolds are very general mathematical objects, but for the purposes of this thesis we restrict
ourselves to a specific subclass of differentiable manifolds called Riemannian manifolds.
For a more detailed look at these concepts, the reader is encouraged to access Do Carmo
(1992). A differentiable manifold is simply a manifold that, locally speaking, is linear enough
to enable the machinery of calculus as if it were in some Euclidean space. Fig. 2.6 presents

23 §2.3.3 will also review dimensionality reduction techniques that make use of the spectral properties of the
Laplacian, specifically where inconsequential manifold directions are eliminated prior to graph propagation.
We do not explicitly make use of such approaches in this thesis, however.
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an example of the surface of a sphere, which is a 2-dimensional manifold in 3-dimensional
ambient space. The plane tangent to the point p is the tangent space T

p

Mk 2 Rk, a real
vector space that allow us to apply operators associated with differentiation to the point p on
the manifold.

�(t)
p

q

T
p

M2

T
q

M2

M2

R3

v

Figure 2.6: A two-dimensional manifold M2 (the surface of a sphere) embedded in R3.

A Riemannian manifold is a differentiable manifold such that the tangent space T
p

Mk is an
inner product space24, which crucially allows the concept of a norm and thus a measurement
of the length of the tangent vectors that reside in the tangent space. These tools allow us
to define the geodesic distance on the manifold.25 Referring to Fig. 2.6, we can introduce a
smooth curve �(t) : R ! Mk between points p and q parameterized by t 2 [0, 1]; the derivative
of this curve �0(t0) with respect to t evaluated at a specific point t = t0 is the tangent vector
v that resides in the tangent space T

t0Mk. Because the tangent space is an inner product
space, we can compute the length of the tangent vector using the norm, and thus the length
l of the curve � is:

l(�) =

Z 1

0
k�0(t)kdt

24 Also known as a Hilbert space.
25 An important point is that the collection of inner products as defined by the tangent spaces at various

points on the manifold should vary smoothly as we traverse the manifold, otherwise the tangent space is not
doing a good job of approximating manifold characteristics. Bengio et al. (2006) discuss the contribution of
manifold curvature to this phenomenon.
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the minimum of which, over all curves between p and q, is precisely the geodesic distance.

The geodesic allows us to define the notion of an exponential map exp

p

: T
p

Mk ! Mk, which
is a mapping from tangent vectors residing in T

p

Mk to the manifold itself. Intuitively, the
exponential map defines the mechanics of traversing the manifold: at a point p we pick a
tangent vector with a certain norm, and traverse the manifold for a distance equal to this
norm, bringing us to another point q on the manifold. The exponential map thus provides
a natural coordinate system for navigating the manifold, since it allows the manifold to be
analyzed completely in terms of tangent spaces. Note that these tangent spaces are of the same
dimension as the manifold k, and in practical problems k << d, the ambient dimension.

2.3.2 The Manifold Laplacian

We now introduce a twice-differentiable function f : Mk ! R that maps points on the
manifold to the real line. With additional restrictions on the range, this function could be
e.g., the marginal distribution of the data, but the issue is that the domain of this function is
the manifold. Composing this function with the exponential map exp

p

however, allows us to
describe f as a function of just k variables: Rk ! R. Now, f is a standard function defined
in Euclidean space, for which the Laplace operator or Laplacian is well-defined:26

�Mf(p) ⌘
kX

i=1

@2f(exp

p

(x))

@x2
i

The Laplacian is an operator that has a number of different interpretations in various fields,
and is especially useful for the modeling of physical phenomena like heat flow. One way to
look at it is the trace of the Hessian matrix (the matrix of second-order partial derivatives),
which in turn contains information about the curvature of the function on the manifold. In
other words, the Laplacian tells us how much the value of the function f differs from its
average value taken over the surrounding points on the manifold, an average rate of change of
sorts.

Why do we care about this quantity? Ideally, we want a smooth map f from Mk to R: if
two points are close to each other on the manifold, then their images according to f should be
close to each other as well, requiring us to respect the manifold structure. This desideratum
can be expressed as:

arg min

f

Z

M
krMfk2 = arg min

f

Z

M
f · �Mf (2.10)

where rM is the gradient with respect to the manifold, and the equality is due to Stokes’
26 When applied to the specific case of Riemannian manifolds, it is known as the Laplace-Beltrami operator.
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theorem. Eq. 2.10 essentially states that the Laplacian is the fundamental quantity that con-
trols how smooth a function is over the manifold. The equation is in quadratic form, and it
is well-known from linear algebra and functional analysis (Kreyszig, 1989) that minimizing
the quadratic form of a linear operator is equivalent to computing the eigenfunctions and
eigenvalues of that operator: �Mf = �f , where � represents the eigenvalues. Specifically,
the ith eigenfunction �

i

is the minimizer to Eq. 2.10 with the minimal value �
i

. Further-
more, it can be shown that the Laplace operator is bounded and self-adjoint; these properties
provide amenable characteristics to the eigenspace: eigenvalues are real, positive, and dis-
crete, and most importantly the eigenfunctions form an orthonormal basis for the space of
square-integrable functions on the manifold. Essentially, we can write any function defined
on the manifold as the infinite sum of weighted basis functions, which turn out to be the
eigenfunctions of the Laplace operator.

The Laplacian provides a good idea of the kinds of functions to use such that the geometry
of the data is respected, since the eigenfunctions provide a set of basis functions that are
specifically adapted to the geometry of the manifold. In the continuous case e.g., the surface
of a sphere, the Laplace operator can be explicitly computed.27 However, in our instance we
are exposed to examples that have been sampled from the low-dimensional data manifold;
thus, we need to approximate the characteristics of the manifold using discrete samples from
it. How do we estimate a natural coordinate system for the unknown manifold, when only
given samples?

2.3.3 The Graph Laplacian

Luckily, there is a well-defined discrete version of the Laplace operator that is called the graph
Laplacian.28 Given a graph G = (V, E) consisting of vertices V and edges E, we define
a function g that is analogous to f , except the domain is no longer the manifold Mk but
rather the vertices of the graph: g : V ! R. From n random samples x1, . . . ,xn

2 Rd, we
can construct the graph Laplacian as a random matrix L ⌘ D � W 2 Rn⇥n, where W is a
similarity matrix such that w

ij

2 [0, 1] denotes the similarity between points i and j, and D
is a diagonal matrix such that D = diag(

P
k

w
ik

). Note that theoretical analysis which links
the manifold and graph Laplacian relies on the graph being a neighborhood graph: instead
of a fully-connected graph, we assume a sparsely-connected one where only a subset of all
possible edge connections are greater than zero. These can either be ✏-neighborhood graphs,
where an edge weight w

ij

between nodes i and j is set to zero if w
ij

< ✏, or m-neighborhood

27 In many instances, computing the Laplacian introduces a deep connection between harmonic analysis and
Riemannian geometry. For example, the classical Fourier series are simply the eigenfunctions of the Laplacian
when the manifold is a circle, which is intuitive since the set of functions defined on the circle are the periodic
functions.

28 In fact, there is a large body of work known as spectral graph theory that specifically analyzes the spectral
properties of graphs and objects derived from graphs, like the Laplacian; see Chung (1997) for more details.
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graphs, where the nearest m neighbors by similarity are active w
ij

> 0, with the rest of the
connections set to zero.

Using the definition of the graph Laplacian, it is easy to show that:
X

i,j

W
ij

(g
i

� g
j

)

2
= gTLg (2.11)

which can be seen as the finite-sample version of Eq. 2.10. Hence, minimizing Eq. 2.11 by
computing the eigenvectors29 of the Laplacian is equivalent to learning functions where the
functional values between adjacent points i and j are minimized proportional to how similar
i and j are.

Building on top of a number of results (Belkin, 2003, Lafon, 2004, inter alia), Belkin and
Niyogi (2008) presented uniform convergence results (over the class of differentiable functions
on the manifold) showing the graph Laplacian converges to the Laplace operator on the man-
ifold as n ! 1, for uniformly sampled points on the manifold as well as arbitrary probability
distributions.30 Thus, not only do we have a way to control for smoothness when learning a
predictor by respecting the manifold structure (the Laplacian), but we can also empirically
estimate this quantity reliably from data. Most importantly, the asymptotic rate of conver-
gence depends not on d, the ambient dimension but rather k, the intrinsic dimension of the
manifold.

The Laplacian Eigenmaps algorithm (Belkin and Niyogi, 2003) is a dimensionality reduction
approach that directly operates on the Laplacian. The Laplacian eigenspace is computed; the
first eigenvector corresponds to the constant function over the graph, with the corresponding
eigenvalue equal to zero. The subsequent k eigenvectors are used to provide a basis that
respects the manifold structure of the data, where k is a user-defined hyperparameter. Each
eigenvector is in Rn, so assembling the eigenvectors we obtain an n⇥k embedding matrix, where
the embedding of the ith example is given by the ith row. Since the eigenspace of the Laplacian
of a graph provides a natural coordinate system for the graph, and the graph is a finite-
sample representation of a k-dimensional manifold, this approach should provide an optimal
embedding (from a squared error minimization perspective, Eq. 2.11). Other well-known
approaches (Roweis and Saul, 2000, Tenenbaum et al., 2000) compute eigenspaces for matrices
that are similar to the Laplacian, but without the theoretical guarantees of convergence to the
manifold Laplacian.

29 We are dealing with a finite-dimensional operator on matrices i.e., the graph Laplacian and not an infinite-
dimensional operator on functions, thus eigenvectors and not eigenfunctions.

30 Technically for this particular theorem W should take the form of a Gaussian kernel, but other works (Hein
et al., 2005, 2007) have generalized this notion to isotropic data-dependent weights.
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2.3.4 Graph Propagation

Instead of taking a dimensionality reduction approach where the eigenspace is truncated, in
this thesis we adopt a more direct viewpoint that is conceptually simple and scalable. In
particular, variants of the label propagation algorithm (Zhu and Ghahramani, 2002) are used
for inference over the graph in §5.1.4. By only considering each example’s similarities with its
m nearest neighbors during inference, the graph embedding is itself a type of low-dimensional
representation. In this section, we establish the connection between label propagation and the
graph Laplacian; for further details, see Bengio et al. (2006).

In a semi-supervised learning setup, label propagation is an iterative algorithm that transfers
label information from labeled nodes to unlabeled nodes by following the graph’s structure.
The dynamics of the propagation is dictated by the random walk matrix P = D�1W .31 The
row normalization is done to make the similarity matrix stochastic. P has the same eigenvalues
as I � L, where L = D�1

2LD�1
2 , since D�1W = D�1

2
(I � L)D

1
2 . L is also referred to as the

normalized Laplacian (Chung, 1997). Thus, label propagation performs inference by enforcing
smoothness with respect to the graph structure via the Laplacian. Furthermore, the label
propagation update equation (see Eq. 5.2 for a version specific to translation distributions)
can be seen as an iterative Jacobi update to a linear system of equations that minimizes a
weighted quadratic cost criterion i.e., Eq. 2.11 (Bengio et al., 2006). The matrices of the
linear system dictate the dynamics of information or label “flow” over the manifold, and the
eigenspace of this linear system provides a natural way to explain these dynamics. This
eigenspace could potentially be truncated similar to Belkin and Niyogi (2003), which would
entail a modified random walk matrix P , but we did not investigate this particular form of
dimensionality reduction in §5.2 and leave it for future work.

31 Label propagation can be seen as a random walk of labels over the graph; see Zhu et al. (2003) for additional
details.
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Chapter 3

Low-Dimensional Embeddings of

Translation Units

“Hidden nature is secret God.”
— Sri Aurobindo

In this chapter, we consider learning low-dimensional representations of translation units that
are expressed (or featurized) in terms of the context which they occur in. Specifically, a latent-
variable model for synchronous context-free grammars (SCFGs, Lewis and Stearns, 1968), as
applied to hierarchical phrase-based translation (HPBT, Chiang, 2007), is learned. The non-
terminals in each rule are augmented with latent states in a context-dependent manner, which
we learn from a parallel corpus. In this case, we project a high-dimensional representation of a
translation rule, represented with the empirical covariances of inside and outside tree features
in synchronous trees where the rule occurs as a non-terminal, into a low-rank space.1

Translation models based on SCFGs treat the translation problem as a context-free parsing
problem. A parser constructs trees over the input sentence by parsing with the source lan-
guage projection of an SCFG, and each derivation induces translations in the target language
(Chiang, 2007). However, in contrast to syntactic parsing, where linguistic intuitions can help
elucidate the “right” tree structure for a grammatical sentence, no such intuitions are available
for synchronous derivations, and so learning the “right” grammars is a central challenge.

Of course, learning synchronous grammars from parallel data is a widely studied problem
(Wu, 1997, Blunsom et al., 2008a, Levenberg et al., 2012, inter alia). However, there has been
less exploration of learning rich non-terminal categories, largely because previous efforts to
learn such categories have been coupled with efforts to learn derivation structures—a com-

1 This chapter is based on material published originally in Saluja et al. (2014a).
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putationally formidable challenge. One popular approach has been to derive categories from
source and/or target monolingual grammars (Galley et al., 2004, Zollmann and Venugopal,
2006, Hanneman and Lavie, 2013). While often successful, accurate parsers are not available
in many languages: a more appealing approach is therefore to learn the category structure
from the data itself.

In this chapter, we take a different approach to previous work in synchronous grammar induc-
tion by assuming that reasonable tree structures for a parallel corpus can be chosen heuristi-
cally, and then, fixing the trees (thereby enabling us to sidestep the worst of the computational
issues), we learn non-terminal categories as latent variables to explain the distribution of these
synchronous trees. This technique has a long history in monolingual parsing (Petrov et al.,
2006, Liang et al., 2007, Cohen et al., 2014), where it reliably yields state-of-the-art phrase
structure parsers based on generative models, but we are the first to apply it to transla-
tion.

We first generalize the concept of latent PCFGs to latent-variable SCFGs (§3.1). We then
follow by a presentation of the tensor-based formulation for our parameters, a representation
that makes it convenient to marginalize over latent states. Subsequently, two methods for
parameter estimation are presented (§3.3): a spectral approach based on the method of mo-
ments, and an EM-based likelihood maximization. Results on a Chinese–English evaluation
set (§3.4) indicate significant gains over baselines and point to the promise of using latent-
variable synchronous grammars in conjunction with a smaller, simpler set of rules instead
of unwieldy and bloated grammars extracted via existing heuristics, where a large number
of context-independent but un-generalizable rules are utilized. Hence, the hope is that this
work promotes the move towards translation models that directly model the conditional like-
lihood of translation rules via (potentially feature-rich) latent-variable models which leverage
information contained in the synchronous tree structure, instead of relying on a heuristic set
of features based on empirical relative frequencies (Koehn et al., 2003) from non-hierarchical
phrase-based translation.

3.1 Latent-Variable SCFGs

Before discussing parameter learning, we introduce latent-variable synchronous context-free
grammars, by extending the definition of L-PCFGs (Matsuzaki et al., 2005, Petrov et al., 2006)
to synchronous grammars as used in machine translation (Chiang, 2007). The key difference in
comparison to L-PCFGs is that the right-hand side (RHS) non-terminals of synchronous rules
are aligned pairs across the source and target languages. A latent-variable SCFG (L-SCFG)
is a 6-tuple (N , m, n

s

, n
t

,⇡, t) where:

• N is a set of non-terminal (NT) symbols in the grammar.
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• [m] is the set of possible hidden states associated with NTs. Aligned pairs of NTs across
the source and target languages share the same hidden state. We assume that the states
associated with NTs on the RHS are not conditionally independent given the latent state
of the left-hand side (LHS).

• [n
s

] is the set of source side words, i.e., the source-side vocabulary, with [n
s

] \ N = ;.

• [n
t

] is the set of target side words, i.e., the target-side vocabulary, with [n
t

] \ N = ;.

• The synchronous production rules compose a set R = R0 [ R1 [ R2:

• Arity 2 (binary) rules (R2):

a(h1) ! h↵1b(h2)↵2c(h3)↵3,�1b(h2)�2c(h3)�3i

or
a(h1) ! h↵1b(h2)↵2c(h3)↵3,�1c(h2)�2b(h3)�3i

where a, b, c 2 N , h1, h2, h3 2 [m], ↵1,↵2,↵3 2 [n
s

]

⇤ and �1,�2,�3 2 [n
t

]

⇤.

• Arity 1 (unary) rules (R1):

a(h1) ! h↵1b(h2)↵2,�1b(h2)�2i

where a, b 2 N , h1, h2 2 [m], ↵1,↵2 2 [n
s

]

⇤ and �,�2 2 [n
t

]

⇤.

• Pre-terminal rules (R0): a(h1) ! h↵,�i where a 2 N , ↵ 2 [n
t

]

⇤ and � 2 [n
s

]

⇤.

Each of these rules is associated with a probability t(a(h1) ! �|a, h1) where � is the
right-hand side (RHS) of the rule, and each rule probability is in the form of a conditional
distribution, conditioned on the LHS (NT category and hidden state).

• For a 2 N , h 2 [m], ⇡(a, h) is a parameter specifying the root probability of a(h).

A skeletal tree (s-tree) for a sentence is the set of rules r1, . . . , rN in the synchronous derivation
of that sentence, where each node i 2 [1, N ] in the tree has an NT category and represents
a rule production without any additional latent state information or decoration. A full tree
consists of an s-tree r1, . . . , rN together with values h1, . . . , hN

for every NT or node in the
tree. We can compute the probability mass function (PMF) over full trees:

p(r1, . . . , rN , h1, . . . , hN

) = ⇡(a1, h1) ⇥
NY

i=2

t(a
i

(h
i

) ! �|a
i

, h
i

) (3.1)

where i = 1 references the root node, and the RHS � is either a function of two hidden states
(r

i

2 R2), one hidden state (r
i

2 R1), or no hidden states (r
i

2 R0). Correspondingly, the
PMF over s-trees is p(r1, . . . , rN ) =

P
h1,...,h

N

p(r1, . . . , rN , h1, . . . , hN

).
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In our instantiation of this model, we refine the single-category “Hiero” grammar introduced
by Chiang (2007) for HPBT in order to learn additional latent NT categories. In HPBT,
the set N consists of only two symbols: X, and a goal symbol S for the LHS of the root
node. Thus, the following discussion is restricted to these kinds of grammars, although the
method is equally applicable in other scenarios, e.g., the extended tree-to-string transducer
(xRs) formalism (Huang et al., 2006, Graehl et al., 2008) commonly used in syntax-directed
translation, and phrase-based MT (Koehn et al., 2003). The formalism can also naturally
handle rules with more than two NTs in the RHS, but for tractability reasons we make use of
at most binary rules R2. This decision also simplifies the subsequent exposition.

3.2 Marginal Inference with L-SCFGs.

Inference with L-SCFGs involves two steps: the first, which is identical to the algorithm for
standard SCFGs (and thus does not require any hidden state information), is to obtain the
set of trees (i.e., the forest) that can derive or generate a given input sentence. Formally,
this operation can be described as the composition of a synchronous grammar with a weighted
finite-state transducer (WFST) representation of the input sentence, and the result is an SCFG,
compactly represented as a hypergraph (Dyer, 2010). For the second step, we introduce a novel
tensor-based inside-outside algorithm that is similar to the one proposed in Cohen et al. (2014),
but adapted to hypergraph parse forests.

3.2.1 Computing the Parse Forest

To compute the parse forest, we rely on a bottom-up dynamic programming algorithm with
Earley-style rules, through which we can obtain a hypergraph representation (Klein and Man-
ning, 2001) of the parse forest for a source language sentence. Hypergraphs are a compact
way to represent a forest of multiple parse trees. Each node in the hypergraph corresponds
to an NT span, and can have multiple incoming and outgoing hyperedges. Hyperedges, which
connect one or more tail nodes to a single head node, correspond exactly to rules, and tail or
head nodes correspond to children (RHS NTs) or parent (LHS NT).

Broadly speaking, the algorithm is based on a variant of the CKY algorithm that handles
non-Chomsky normal form grammars (Chappelier and Rajman, 1998), suitably modified for
translation (Chiang, 2007). The basic idea is to maintain two charts: one corresponding to
active items, namely rules that have been incompletely applied to that particular span, and
passive items, namely rules that have been completed. For a presentation of this algorithm as
a weighted logic program, please see §2.3.2.2 in Dyer (2010).
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3.2.2 Tensor Inside-Outside Algorithm

In this section, we present an inside-outside algorithm that handles the hidden states in an
L-SCFG by marginalizing or summing over these states during inference. We first introduce
the appropriate structures and machinery to compute with these hidden states (tensors),
along with a running example to show correctness of computation. Then, we show that tree
probabilities (and by extension, marginal terms for subspans of sentences) are invariant to
linear transformations of the hidden state parameters. This result is crucial, because it allows
us to estimate hidden state parameters (specifically, linear transforms of them) using a singular
value decomposition of observable moments (§3.3.1). We finish by presenting pseudocode for
the algorithm and a brief discussion of its computational properties.

Tensor Structures

For a parameter t of rule r, the latent state h1 attached to the LHS NT of r is associated
with the outside tree for the sub-tree rooted at the LHS, and the states attached to the RHS
NTs are associated with the inside trees of that NT. Since we do not assume conditional
independence of these states, we need to consider all possible interactions, which can be
compactly represented as a 3rd-order tensor in the case of a binary rule, a matrix (i.e., a
2nd-order tensor) for unary rules, and a vector for pre-terminal (lexical) rules. Preferences for
certain outside-inside tree combinations are reflected in the values contained in these tensor
structures. In this manner, we intend to capture interactions between non-local context of a
phrase, which can typically be represented via features defined over outside trees of the node
spanning the phrase, and the interior context, correspondingly defined via features over the
inside trees. We refer to these tensor structures collectively as T r for rules r 2 R, and they
encompass the parameters t, which are conditional probabilities conditioned on the LHS NT
category and state (Eq. 3.1).

For r 2 R0 : T r 2 Rm⇥1; similarly for r 2 R1 : T r 2 Rm⇥m and r 2 R2 : T r 2 Rm⇥m⇥m. We
also maintain a vector T S 2 R1⇥m corresponding to the parameters ⇡(S, h) for the goal node
(root). Each entry in these structures corresponds to the probability of a full rule; for example,
T r

h1,h2,h3
= t(r, h2, h3|a, h1) for r 2 R2, and similarly for r 2 R1 and r 2 R0. As a result,

for r 2 R0 the parameter values in the associated vector T r are greater than or equal to zero
and sum to one (along with the entries in the vector T S); the same can be said for each row
T r

h1,⇤ in the matrices T r for r 2 R1, as well as each matrix T r

h1,⇤,⇤ in the tensor T r for r 2 R2.
These parameters participate in tensor-vector operations: a 3rd-order tensor T r, r 2 R2 can
be multiplied along each of its three modes (⇥0, ⇥1, ⇥2), and if multiplied by an m⇥1 vector,
will produce an m ⇥ m matrix.2 Note that matrix multiplication can be represented by ⇥1

when multiplying on the right and ⇥0 when multiplying on the left of the matrix.
2 This operation is also called a contraction.
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It is straightforward to show that these tensor structures correctly compute the probability
of a tree. To show this computation, we introduce a simple example of a synchronous tree
generated from a “Hiero” grammar in Fig. 3.1, along with the skeletal rules that generated
the tree. The nodes in the tree are numbered, with the corresponding rules presented below.
Within a rule, the superscripts on NTs simply indicate which NTs are aligned across source
and target languages.

S1

X2

X3

el

X4

perro

X5

muerde

S1

X2

X3

the

X4

dog

X5

bites

Figure 3.1: A simple synchronous tree example, consisting of the following rules:
r1 : S ! X1X2 ||| X1X2 r2 : X ! X1X2 ||| X1X2 r3 : X ! el ||| the
r4 : X ! perro ||| dog r5 : X ! muerde ||| bites

Each rule r
i

has an associated parameter T r

i that represents the probability distribution over
latent states attached to RHS NT categories, conditional on the LHS category and latent state.
Consider the term T r2 ⇥1 T r3 ⇥2 T r4 . The result is an m-dimensional column vector, which
we call b2. By the definition of the tensor T r2 , we have

b2
h

= [T r2 ⇥1 T r3 ⇥2 T r4
]

h

=

X

h2,h3

t(X ! X1X2|||X1X2, h2, h3|h, X) ⇥ t(X ! el ||| the|h2, X) ⇥ t(X ! perro ||| dog|h3, X)

Similarly, T r1 ⇥1 (T r2 ⇥1 T r3 ⇥2 T r4
) ⇥2 T r5 , which we call b1, is

b1
h

=

X

h2,h3

t(S ! X1X2|||X1X2, h2, h3|h, X) ⇥ b2
h2

⇥ t(X ! muerde ||| bites|h3, X)

And finally, the probability of the full tree is:
X

h

b1
h

⇡(S, h) = b1 ⇥0 T S

These are precisely the calculations used in the conventional CKY dynamic programming
algorithm for computing tree probabilities.
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Linear Transformations of Parameters

Assuming each entry in these structures represents the probability of a rule, replacing scalar
multiplication with tensor-vector products in the inside-outside dynamic programming step
should correctly compute the probability of the marginal terms µ(X, i, j) (the marginal prob-
ability of X dominating the words indexed from i to j), and therefore the probability of an
s-tree p(r1, . . . , rN ).3 However, Theorem 3 in Cohen et al. (2014) shows that it is sufficient,
for the purposes of s-tree probability and marginal terms computation, to have parameters
that are equal to the true parameters up to a linear transform. We restate the theorem below
(with suitable generalizations from CFGs to SCFGs):

Theorem 1. Assume that we have an L-SCFG with parameters T r, and that there exist
matrices GX 2 Rm⇥m and GS 2 Rm⇥m such that GX and GS are invertible, Cr is defined such
that:

1. for r 2 R2 with LHS NT X, Cr ⇥2 y2 ⇥1 y1 = (GX
)

�1
(T r ⇥2 (GX

y2) ⇥1 (GX
y1))

2. for r 2 R2 with LHS NT S, Cr ⇥2 y2 ⇥1 y1 = (GS
)

�1
(T r ⇥2 (GX

y2) ⇥1 (GX
y1))

3. for r 2 R1 with LHS NT X, Cr ⇥1 y1 = (GX
)

�1
(T r ⇥1 (GX

y1))

4. for r 2 R1 with LHS NT S, Cr ⇥1 y1 = (GS
)

�1
(T r ⇥1 (GX

y1))

5. for r 2 R0, Cr

= (GX
)

�1T r

6. CS
= T SGS

for vectors y1,y2 2 Rm⇥1. Then the algorithm in Fig. 3.2 correctly computes the marginal
probabilities µ(X, i, j) under the L-SCFG over the parse forest and the sentence probability
µ(S, 1, N) under the L-SCFG.

The proof of this theorem when the forest consists of a single tree is in Cohen et al. (2014),
but we provide some intuition by walking through a sample inside computation below. The
idea is relatively simple: take your existing parameters T r, and transform them by a random
linear transformation, such that the linear transformation will cancel out when marginals or
other quantities from the dynamic programming algorithm are computed. Each rule r

i

has
an associated parameter Cr, which are the true parameters T r but with an unknown linear
transformation applied. Our aim is to show, under the assumptions in the theorem, that the
marginal probability of the tree p(r1, . . . , rN ) computed with parameters Cr is equivalent to
using the true parameters T r i.e., we show that the terms associated with the unknown linear
transform cancel. While we only detail the computation of the overall probability of the tree, it
is very similar to the computation of marginal terms µ(a, i, j), a 2 N for subspans [i, j).

3 Or the probability of a sentence over the forest of s-trees, as the hypergraph version of the algorithm
computes.
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Inputs: Sentence f1 . . . fN , L-SCFG (N , S,m, n), parameters Cr 2 R(m⇥m⇥m), 2 R(m⇥m), or 2 R(m⇥1) for
all r 2 R, CS 2 R(1⇥m), hypergraph H.
Data structures:

For each node q 2 H:

• ↵(q) 2 Rm⇥1 is a column vector of inside terms.
• �(q) 2 R1⇥m is a row vector of outside terms.
• For each incoming edge e 2 B(q) to node q, µ(e) is a marginal probability for edge (rule) e.

Algorithm:

. Inside Computation
For nodes q in topological order in H,

↵(q) = 0
For each incoming edge e 2 B(q),

tail = t(e), rule = r(e)
if |tail| = 0, then ↵(q) = ↵(q) + Crule

else if |tail| = 1, then ↵(q) = ↵(q) + Crule ⇥1 ↵(tail0)
else if |tail| = 2, then ↵(q) = ↵(q) + Crule ⇥2 ↵(tail1)⇥1 ↵(tail0)

. Outside Computation
For q 2 H,

�(q) = 0
�(goal) = CS

For q in reverse topological order in H,
For each incoming edge e 2 B(q),

tail = t(e), rule = r(e)
if |tail| = 1, then

�(tail0) = �(tail0) + �(q)⇥0 C
rule

else if |tail| = 2, then
�(tail0) = �(tail0) + �(q)⇥0 C

rule ⇥2 ↵(tail1)
�(tail1) = �(tail1) + �(q)⇥0 C

rule ⇥1 ↵(tail0)
.Edge Marginals
Sentence probability g = ↵(goal)⇥ �(goal)
For edge e 2 H,

head = h(e), tail = t(e), rule = r(e)
if |tail| = 0, then µ(e) = (�(head)⇥0 C

rule)/g
else if |tail| = 1, then µ(e) = (�(head)⇥0 C

rule ⇥1 ↵(tail0))/g
else if |tail| = 2, then µ(e) = (�(head)⇥0 C

rule ⇥2 ↵(tail1)⇥1 ↵(tail0))/g

Figure 3.2: The tensor form of the hypergraph inside-outside algorithm, for calculation of rule
marginals µ(e). A slight simplification in the marginal computation yields NT marginals for spans
µ(X, i, j). B(q) returns the incoming hyperedges for node q, and h(e), t(e), r(e) return the head node,
tail nodes, and rule for hyperedge e.

Using the parameters Cr, the probability of the tree is:

(Cr1 ⇥1 (Cr2 ⇥1 Cr3 ⇥2 Cr4
) ⇥2 Cr5

) ⇥0 CS

The expression mirrors the structure of the tree: since r3, r4, r5 2 R0, their corresponding
parameters are m-dimensional column vectors, and since r1, r2 2 R2, their corresponding
parameters are m ⇥ m ⇥ m tensors. The last term corresponds to the root probability. Next,
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we define an equivalence between the Cr and T r parameters, starting with the axioms:

Cr3
= (GX

)

�1T r3 Cr4
= (GX

)

�1T r4 Cr5
= (GX

)

�1T r5

Using the first assumption of the theorem, we can write:

Cr2
= (GX

)

�1
(T r2 ⇥1 (GXCr3

) ⇥2 (GXCr4
))

= (GX

)

�1
(T r2 ⇥1 (GX

(GX

)

�1T r3
) ⇥2 (GX

(GX

)

�1T r4
)) = (GX

)

�1
(T r2 ⇥1 T r3 ⇥2 T r4

)

The last equivalence Cr1
= (GS

)

�1
(T r1 ⇥1 T r2 ⇥2 T r5

) can be derived similarly. Finally,
computing the overall probability of the sentence requires a multiplication on the left (⇥0) by
the root probability parameter CS, which is where the GS terms cancel.

Algorithm

Figure 3.2 presents the tensor version of the inside-outside algorithm for L-SCFG inference.
The algorithm computes inside and outside probabilities over the hypergraph using the ten-
sor representations, and converts these probabilities to marginal rule probabilities. These
marginals are computed by summing over the latent states, which in practice corresponds to
simple tensor-vector products. Note that we provide linearly transformed parameters Cr as
inputs, a strict generalization over operating on probabilities T r.

The complexity of this decoding algorithm is O(n3m3|G|) where n is the length of the input
sentence, m is the number of latent states, and |G| is the number of production rules in the
grammar without latent-variable annotations (i.e., m = 1).4 The bulk of the computation is a
series of tensor-vector products of relatively small size (each dimension is of length m), which
can be computed very quickly and in parallel. The tensor computations can be significantly
sped up using techniques described by Cohen and Collins (2012), so that they are linear in m
and not cubic.

3.3 Parameter Estimation for L-SCFGs

To estimate the parameters of an L-SCFG, we assume the existence of a dataset composed of
synchronous s-trees, which can be acquired from word alignments. Normally in phrase-based
translation models, we consider all possible phrase pairs consistent with the word alignments
and estimate features based on surface statistics associated with the phrase pairs or rules.
The weights of these features are then learned using a discriminative training algorithm (Och,

4 In practice, the term m3|G| can be replaced with a smaller term, which separates the rules in G by the
number of NTs on the RHS. This idea relates to the notion of “effective grammar size” which we discuss in
§3.4.
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2003, Chiang, 2012, inter alia). In contrast, in this work we restrict the number of possible
synchronous derivations for each sentence pair to just one; thus, derivation forests do not have
to be considered, making parameter estimation more tractable.5 To achieve this objective, for
each sentence in the training data we extract the minimal set of synchronous rules consistent
with the word alignments (§2.1.3). By using minimal rules as a starting point instead of the
traditional heuristically-extracted rules (Chiang, 2007) or arbitrary compositions of minimal
rules (Galley et al., 2006), we are also able to explore the transition from minimal rules to
composed ones in a principled manner by encoding contextual information through the latent
states.

We explore two methods for estimating the parameters Cr of the model: a likelihood-maximization
approach based on EM (Dempster et al., 1977), and a spectral approach based on the method
of moments (Hsu et al., 2009, Cohen et al., 2014), where we identify a subspace using a singular
value decomposition (SVD) of the cross-product feature space between inside and outside trees
and estimate parameters in this subspace. In the spectral approach, we base our parameter
estimates on low-rank representations of moments of features, while EM explicitly maximizes
a likelihood criterion. The parameter estimation algorithms are relatively similar, but in lieu
of sparse feature functions in the spectral case, EM uses partial counts estimated with the
current set of parameters. The nature of EM allows it to be susceptible to local optima, while
the spectral approach comes with guarantees on obtaining the global optimum (Cohen and
Collins, 2014). Lastly, computing the SVD and estimating parameters in the low-rank space
is a one-shot operation, as opposed to the iterative procedure of EM, and therefore is much
more computationally efficient.

3.3.1 Estimation with Spectral Method

We generalize the parameter estimation algorithm presented in Cohen et al. (2014) to the
synchronous or bilingual case. The central concept of the spectral parameter estimation algo-
rithm is to learn an m-dimensional representation of inside and outside trees by defining these
trees in terms of features, in combination with a projection step (SVD), with the hope being
that the lower-dimensional space captures the syntactic and semantic regularities among rules
from the sparse feature space. Every NT in an s-tree has an associated inside and outside
tree; the inside tree contains the entire sub-tree at and below the NT, and the outside tree is
everything else in the synchronous s-tree except the inside tree. The inside feature function �
maps the domain of inside tree fragments to a d-dimensional Euclidean space, and the outside
feature function  maps the domain of outside tree fragments to a d0-dimensional space. The
spectral estimator is based on extracting latent-variable parameters from these observable
forms (Jaeger, 2000), and a key result that we build upon is that it is possible to directly

5 For future work, we will consider efficient algorithms for parameter estimation over derivation forests, since
there may be multiple valid ways to explain the sentence pair via a synchronous tree structure.
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estimate our latent-variable parameters from a training set consisting of s-trees.

Observable Operators

The main implication of Theorem 1 is that the linear transformations add an extra degree
of freedom during parameter estimation, which crucially allows us to use observable forms
and the SVD to estimate these linearly transformed parameters. Below, we explain how these
parameters can be estimated.

We sample a full tree r1, . . . , rN , h1, . . . , hN

from the joint distribution p(r1, . . . , rN , h1, . . . , hN

).
Our random variables are defined as follows:

• R
i

is the rule r
i

• T1 is the inside tree rooted at node i; for r
i

2 R2, T2 is the inside tree rooted at the
left child of node i, and T3 is the inside tree rooted at the right child of node i. For
r
i

2 R1 there is only a single inside tree random variable T2, and for r
i

2 R0, there are
no children, and hence no child random variables T2 and T3.

• H1, H2, and H3 are the corresponding latent variables associated with node i and its
children.

• A1, A2, and A3 are the NT categories associated with the node i and its children; in
HPBT, these can only be X or S, with the added restriction that only A1 (LHS NT) can
take the value S. For subsequent discussion, we assume a1, a2, a3 = X unless otherwise
noted, and thus drop the NT category references unless referring to S.

• O is the outside tree at node i.

• B is equal to 1 if node i is at the root of the tree, 0 otherwise.

Let �(t) 2 Rd⇥1,  (o) 2 Rd

0⇥1 be the inside and outside feature functions for inside tree t and
outside tree o. We also assume the existence of projection matrices U 2 Rd⇥m and V 2 Rd

0⇥m.
With these matrices, we can define additional random variables Y1, Y2, Y3, Z 2 Rm⇥1 as:

Y1 = UT

�(T1) Z = V T

 (O)

Y2 = UT

�(T2) Y3 = UT

�(T3)
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With these random variables, we can define the following quantities in expectation:

⌃ = E[Z ⌦ Y1]

Dr

= E [[[R1 = r]]Z ⌦ Y2 ⌦ Y3] if r 2 R2

Dr

= E [[[R1 = r]]Z ⌦ Y2] if r 2 R1

Dr

= E [[[R1 = r]]Z] if r 2 R0

where the [[R1 = r]] notation is an indicator function which is 1 when R1 = r and 0 otherwise.
As long as we have access to functions  and � and projection matrices U and V , these
quantities can be estimated directly from training data consisting of a set of s-trees, one for
every sentence pair. We can use the training examples to derive i.i.d. samples from the joint
distribution over the random variables (A1, R1, Y1, Y2, Y3, Z, B) used in the definition of Dr.
In terms of these expectations, our observable representations can be written as:

Cr

= Dr

⌃

�1

CS

= E [[[A1 = S]]Y1|B = 1] (3.2)

These quantities will satisfy the conditions of Theorem 1 under certain conditions. First,
define the matrices I 2 Rd⇥m and J 2 Rd

0⇥m as:

[I]

i,h

= E[�
i

(T1)|H1 = h]

[J ]

i,h

= E[ 
i

(O)|H1 = h]

We also define a column vector � 2 Rm⇥1 to denote the distribution of LHS latent states i.e.,
�
h

= P (H1 = h). The correctness of the observable representations in Eq. 3.2 depends on
several conditions being satisfied (similar to Hsu et al. (2009)):

Theorem 2. Assume that the following conditions are satisfied:

1. I and J have rank m i.e., they are full rank.

2. 8h 2 [m], �
h

> 0.

3. The matrices U, U 2 Rd⇥m and V X, V 2 Rd

0⇥m are such that the matrices GX
= UT I

and KX
= V TJ (correspondingly, GS and KS) are invertible.

Then, defining GX and GS in Theorem 1 as GX
= (UX

)

T IX and GS
= (US

)

T IS, the observable
representations of Eq. 3.2 satisfy the equalities in Theorem 1 and can be used to compute
marginal terms and s-tree/sentence probabilities.
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Proof. Assume the following identities hold:

r 2 R2 : Dr

= diag(�)(KX

)

T

(T r ⇥2 (GX

y2) ⇥1 (GX

y1))

r 2 R1 : Dr

= diag(�)(KX

)

T

(T r ⇥1 (GX

y1))

r 2 R0 : Dr

= diag(�)(KX

)

TT r

⌃ = GXdiag(�)(KX

)

T

CS

= T SGS

Under the conditions of the theorem, ⌃ is invertible, and therefore ⌃

�1
= ((KX

)

T

)

�1
(diag(�))

�1
(GX

)

�1.
Combining this information with Eq. 3.2 and the indentities above, the theorem follows. There-
fore, in order to prove the theorem we need to show that the identities above hold. We show
Dr

= diag(�X

)(KX

)

TT r for r 2 R0; the other identities can be derived similarly.

By definition, Dr

= E [[[R1 = r]]Z], or equivalently

Dr

i

= E [[[R1 = r]]Z
i

]

=

X

h

p(r, h)E[Z
i

|H1 = h, R1 = r]

=

X

h

p(h)p(r|h)E[Z
i

|H1 = h, R1 = r] (3.3)

=

X

h

�
h

T r

h

E[Z
i

|H1 = h, R1 = r]

=

X

h

�
h

T r

h

E[Z
i

|H1 = h] (3.4)

=

X

h

�
h

T r

h

KX

i,h

where in line 3.3 we use the chain rule, and in line 3.4 we use the independence assumptions
of the L-SCFG (the outside tree is conditionally independent of the rule given the LHS NT
and the hidden state) and the definition of K. The identity Dr

= diag(�)(KX

)

TT r for r 2 R0

follows.

Empirical Estimates

The previous theorem allows us to estimat latent-variable parameters from observable quan-
tities. The following lemma motivates and justifies the use of SVD for finding values U and
V that satisfy the second condition of the theorem (where we assume the first holds):

Lemma 1. Assume that the first two conditions of Theorem 2 hold, and define the inside-
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outside feature covariance matrix as:

⌦ = E [�(T1) ⌦ (O)] (3.5)

Then if U is a matrix of the m left singular vectors of ⌦ corresponding to non-zero singular
values, and V is a matrix of the m right singular vectors of ⌦ corresponding to non-zero
singular values, the third condition in Theorem 2 is satisfied.

This lemma can be proved by showing ⌦ = Idiag(�)JT ; the remainder of the proof is very
similar to lemma 2 in Hsu et al. (2009).

We can estimate the matrix ⌦ directly from a training set of s-trees. Let O be the set
of all tuples of inside-outside trees in our training corpus, whose size is equivalent to the
number of rule tokens (occurrences in the corpus) M , and �(t), (o) be defined as before. By
computing the outer product ⌦ between the inside and outside feature vectors for each pair
and aggregating, we obtain the empirical inside-outside feature covariance matrix:

ˆ

⌦ =

1

|O|
X

(o,t)2O
�(t) ( (o))> (3.6)

If m is the desired latent space dimension, we compute an m-rank truncated SVD of the
empirical covariance matrix ˆ

⌦ ⇡ U⌃V >, where U 2 Rd⇥m and V 2 Rd

0⇥m are the matrices
containing the left and right singular vectors, and ⌃ 2 Rm⇥m is a diagonal matrix containing
the m-largest singular values along its diagonal. The techniques from Hsu et al. (2009) can
be used to extend the results from the true covariance matrix ⌦ to the empirically-estimated
matrix ˆ

⌦.

Figure 3.3 provides the remaining steps in the algorithm. Note that for notational convenience,
we have included the ⌃

�1 term in the projection matrix V for the outer tree features. The
M training examples are obtained by considering all nodes in all of the synchronous s-trees
given as input. In step 1, for each inside and outside tree, we project its high-dimensional
representation to the m-dimensional latent space. Using the m-dimensional representations
for inside and outside trees, in step 2 for each rule type r we compute the covariance between
the inside tree vectors and the outside tree vector using the tensor product, a generalized outer
product to compute covariances between more than two random vectors. For binary rules, with
two child inside vectors and one outside vector, the result ˆEr is a 3-mode tensor; for unary
rules, a regular matrix, and for pre-terminal rules with no right-hand side non-terminals, a
vector. The final parameter estimate is then the associated tensor/matrix/vector, scaled by
the maximum likelihood estimate of the rule r, as in step 3.

The corresponding theoretical guarantees from Cohen et al. (2014) can also be generalized to
the synchronous case. ˆ

⌦ is an empirical estimate of the true covariance matrix ⌦, and if ⌦ has
rank m, then the marginals computed using the spectrally-estimated parameters will converge
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Inputs:

Training examples (r(i), t(i,1), t(i,2), t(i,3), o(i), b(i)) for i 2 {1 . . .M}, where r(i) is a context free rule; t(i,1), t(i,2),
and t(i,3) are inside trees; o(i) is an outside tree; and b(i) = 1 if the rule is at the root of tree, 0 otherwise. A
function � that maps inside trees t to feature-vectors �(t) 2 Rd⇥1. A function  that maps outside trees o to
feature-vectors  (o) 2 Rd

0⇥1.
Algorithm:

. Step 0: Singular Value Decomposition

• Compute the SVD of Eq. 3.6 to calculate matrices Û 2 R(d⇥m) and V̂ 2 R(d0⇥m).

. Step 1: Projection

Y (t) = U>�(t)

Z(o) = ⌃�1V > (o)

. Step 2: Calculate Correlations

Êr =

8
>>><

>>>:

P
o2Q

r

Z(o)

|Qr| if r 2 R0P
(o,t)2Q

r

Z(o)⌦Y (t)

|Qr| if r 2 R1
P
(o,t2,t

3)2Q

r

Z(o)⌦Y (t2)⌦Y (t3)

|Qr| if r 2 R2

Qr is the set of outside-inside tree triples for binary rules, outside-inside tree pairs for unary rules, and outside
trees for pre-terminals. . Step 3: Compute Final Parameters

• For all r 2 R,
Ĉr = count(r)

M

⇥ Êr

• For all r(i) 2 {1, . . . ,M} such that b(i) is 1,

ĈS = ĈS + Y (t(i,1))
|QS|

QS is the set of trees at the root.

Figure 3.3: The spectral learning algorithm for estimating parameters of an L-SCFG.

to the true marginals, with the sample complexity for convergence inversely proportional
to a polynomial function of the mth largest singular value of ⌦. In particular, Theorem 8
states a PAC-style theorem for the learning algorithm, which provides a lower bound on the
number of training examples needed to obtain an empirical probability estimate for an s-tree
p̂(r1, . . . , rN ) within ✏ of the true probability of the s-tree p(r1, . . . , rN ) (and similarly for the
marginal terms).

3.3.2 Estimation with EM

A likelihood maximization approach can also be used to learn the parameters of an L-SCFG.
Parameters are initialized by sampling each parameter value ˆCr

(h1, h2, h3) from the interval
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Inputs:

Training examples (r(i), t(i,1), t(i,2), t(i,3), o(i), b(i)) for i 2 {1 . . .M}, where r(i) is a context free rule; t(i,1), t(i,2),
and t(i,3) are inside trees; o(i) is an outside tree; b(i) = 1 if the rule is at the root of tree, 0 otherwise; and
MAX_ITERATIONS.
Algorithm:

. Step 0: Parameter Initialization
For rule r 2 R,

• if r 2 R0: initialize Ĉr 2 Rm⇥1

• if r 2 R1: initialize ĈrRm⇥m

• if r 2 R2: initialize ĈrRm⇥m⇥m

Initialize ĈS 2 Rm⇥1

Ĉr

0 = Ĉr, ĈS

0 = ĈS

For iteration t = 1, . . . ,MAX_ITERATIONS,

• Expectation Step:
. Estimate Y and Z

Compute partial counts and total tree probabilities g for all t and o using Fig. 3.2 and parameters
Ĉr

t�1, Ĉ
S

t�1.
. Calculate Correlations

Êr =

8
>>>>><

>>>>>:

P
o,g2Q

r

Z(o)
g

if r 2 R0

P
(o,t,g)2Q

r

Z(o)⌦Y (t)
g

if r 2 R1

P

(o,t2,t3,g)2Q

r

Z(o)⌦Y (t2)⌦Y (t3)
g

if r 2 R2

. Update Parameters
For all r 2 R, Ĉr

t

= Ĉr

t�1 � Êr

For all r(i) 2 {1, . . . ,M} such that b(i) is 1, ĈS

t

= ĈS

t

+ (ĈS

t�1 � Y (r(i)))/g

QS is the set of trees at the root.

• Maximization Step
if r 2 R0: 8h1 : Ĉr(h1) =

Ĉ

r(h1)P
r

0=r

P
h1

Ĉ

r

0
(h1)

if r 2 R1: 8h1, h2 : Ĉr(h1, h2) =
Ĉ

r(h1,h2)P
r

0=r

P
h2

Ĉ

r

0
(h1,h2)

if r 2 R2: 8h1, h2, h3 : Ĉr(h1, h2, h3) =
Ĉ

r(h1,h2,h3)P
r

0=r

P
h2,h3

Ĉ

r

0
(h1,h2,h3)

if LHS(r) = S: 8h1 : Ĉr(h1) =
Ĉ

r(h1)P
r

0=r

P
h1

Ĉ

r

0
(h1)

Figure 3.4: The EM-based algorithm for estimating parameters of an L-SCFG.

[0, 1] uniformly at random.6 We first decode the training corpus using an existing set of
parameters to compute the inside and outside probability vectors associated with NTs for
every rule in each s-tree, constrained to the tree structure of the training example. These

6 In our experiments, we also tried the initialization scheme described in Matsuzaki et al. (2005), but found
that it provided little benefit.
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probabilities can be computed using the decoding algorithm in Figure 3.2 (where ↵ and �
correspond to the inside and outside probabilities respectively), except the parse forest consists
of a single tree only. These vectors represent partial counts over latent states. We then
define functions Y and Z (analogous to the spectral case) which map inside and outside tree
instances to m-dimensional vectors containing these partial counts. In the spectral case, Y
and Z are estimated just once, while in the case of EM they have to be re-estimated at each
iteration.

The expectation step thus consists of computing the partial counts of inside and outside trees
t and o, i.e., recovering the functions Y and Z, and updating parameters Cr by computing
correlations, which involves summing over partial counts (across all occurrences of a rule in
the corpus). Each partial count’s contribution is divided by a normalization factor g, which
is the total probability of the tree which t or o is part of. Note that unlike the spectral case,
there is a specific normalization factor for each inside-outside tuple. Lastly, the correlations
are scaled by the existing parameter estimates.

To obtain the next set of parameters, in the maximization step we normalize ˆCr for r 2 R
such that for every h1,

P
r

0=r,h2,h3
ˆCr

0
(h1, h2, h3) = 1 for r 2 R2,

P
r

0=r,h2
ˆCr

0
(h1, h2) = 1 for

r 2 R1, and
P

r

0=r,h2
ˆCr

0
(h2) = 1 for r 2 R0. We also normalize the root rule parameters

ˆCr where LHS(r) = S. It is also possible to add sparse, overlapping features to an EM-based
estimation procedure (Berg-Kirkpatrick et al., 2010) and we leave this extension for future
work.

3.4 Experiments

The goal of the experimental section is to evaluate the performance of the latent-variable SCFG
in comparison to a baseline without any additional NT annotations (Min-Grammar), and to
compare the performance of the two parameter estimation algorithms. We first present results
from a synthetic grammar experiment to demonstrate the effic We also compare L-SCFGs
to a Hiero baseline (Chiang, 2007). The language pair of evaluation is Chinese–English
(ZH-EN).

We score translations using BLEU (Papineni et al., 2002). The latent-variable model is in-
tegrated into the standard MT pipeline by computing marginal probabilities for each rule in
the parse forest of a source sentence using the algorithm in Figure 3.2 with the parameters
estimated through the algorithms in Figures 3.4 and 3.3, and is added as a feature for the
rule during MERT (Och, 2003). These probabilities are conditioned on the LHS (X), and
are thus joint probabilities for a source-target RHS pair. We also write out as features the
conditional relative frequencies ˆP (e|f) and ˆP (f |e) as estimated by our latent-variable model,
i.e., conditioned on the source and target RHS.
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Overall, we find that both the spectral and the EM-based estimators improve upon a minimal
grammar baseline with only a single category, but the spectral approach does better. In fact, it
matches the performance of the standard Hiero baseline, despite learning on top of a minimal
grammar.

3.4.1 Data and Baselines

The ZH-EN data is the BTEC parallel corpus (Paul, 2009); we combine the first and second
development sets in one, and evaluate on the third development set. The development and
test sets are evaluated with 16 references. Statistics for the data are shown in Table 3.1.
We used the cdec decoder (Dyer et al., 2010) to extract word alignments and the baseline
hierarchical grammars, MERT tuning, and decoding. We used a 4-gram language model
built from the target-side of the parallel training data. The Python-based implementation
of the tensor-based decoder, as well as the parameter estimation algorithms is available at
http://www.github.com/asaluja/spectral-scfg/.

ZH-EN
TRAIN (SRC) 334K
TRAIN (TGT) 366K
DEV (SRC) 7K
DEV (TGT) 7.6K
TEST (SRC) 3.8K
TEST (TGT) 3.9K

Table 3.1: Corpus statistics (in words). For the target DEV and TEST statistics, we take the first
reference (16 references total).

The baseline hiero system uses a grammar extracted by applying the commonly used heuris-
tics (Chiang, 2007). Each rule is decorated with two lexical and phrasal features corresponding
to the forward (e|f) and backward (f |e) conditional log frequencies, along with the log joint
frequency (e, f), the log frequency of the source phrase (f), and whether the phrase pair or
the source phrase is a singleton. Weights for the language model (and language model OOV),
glue rule, and word penalty are also tuned. The Min-Grammar baseline7 maintains the same
set of weights.

Grammar sizes are presented in Table 3.2. For the latent-variable models, we provide the
effective grammar size, where the number of NTs on the RHS of a rule is taken into account
when computing the grammar size, by assuming each possible latent variable configuration
amongst the NTs generates a different rule. Furthermore, all singletons are mapped to the

7 Code to extract the minimal derivation trees is available at http://www.cs.rochester.edu/u/gildea/mt/.
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Grammar Number of Rules
hiero 1.69M
min-grammar 59K
LV m = 1 27.56K
LV m = 8 3.18M
LV m = 16 22.22M

Table 3.2: Grammar sizes for the different systems; for the latent-variable models, effective grammar
sizes are provided.

OOV rule, while we include singletons in min-grammar.8 Hence, effective grammar size can
be computed as m(1 + |R>1

0 |) + m2|R1| + m3|R2|, where R>1
0 is the set of pre-terminal rules

that occur more than once.

3.4.2 Spectral Features

We use the following set of sparse, binary features in the spectral learning process:

• Rule Indicator. For the inside features, we consider the rule production containing
the current non-terminal on the left-hand side, as well as the rules of the children (dis-
tinguishing between left and right children for binary rules). For the outside features,
we consider the parent rule production along with the rule production of the sibling (if
it exists).

• Lexical. for both the inside and outside features, any lexical items that appear in the
rule productions are recorded. Furthermore, we consider the first and last words of
spans (left and right child spans for inside features, distinguishing between the two if
both exist, and sibling span for outside features). Source and target words are treated
separately.

• Length. the span length of the tree and each of its children for inside features, and the
span length of the parent and sibling for outside features.

In our experiments, we instantiated a total of 170,000 rule indicator features, 155,000 lexical
features, and 80 length features.

3.4.3 Chinese–English Experiments

Table 3.3 presents a comprehensive evaluation of the ZH-EN experimental setup. The first
section consists of the various baselines we consider. In addition to the aforementioned base-

8 This OOV mapping is done so that the latent-variable model can handle unknown tokens.
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BLEU

Setup Dev Test

Baselines
hiero 46.08 55.31
Min-Grammar 43.38 51.78
MLE 43.24 52.80

Spectral

m = 1 RI 44.18 52.62
m = 8 RI 44.60 53.63
m = 16 RI 46.06 55.83
m=16 RI+Lex+Sm 46.08 55.22
m=16 RI+Lex+Len 45.70 55.29
m=24 RI+Lex 43.00 51.28
m=32 RI+Lex 43.06 52.16

EM m = 8 40.53 (0.2) 49.78 (0.5)
m = 16 42.85 (0.2) 52.93 (0.9)
m = 32 41.07 (0.4) 49.95 (0.7)

Table 3.3: Results for the ZH-EN corpus, comparing across the baselines and the two parameter
estimation techniques. RI, Lex, and Len correspond to the rule indicator, lexical, and length features
respectively, and Sm denotes smoothing. For the EM experiments, we selected the best scoring iteration
by tuning weights for parameters obtained after 25 iterations and evaluating other parameters with
these weights. Results for EM are averaged over 5 starting points, with standard deviation given in
parentheses. Spectral, EM, and MLE performances compared to the Min-Grammar baseline are
statistically significant (p < 0.01).

lines, we evaluated a setup where the spectral parameters simply consist of the joint maximum
likelihood estimates of the rules. This baseline should perform en par with Min-Grammar,
which we see is the case on the development set. The performance on the test set is better
though, primarily because we also include the reverse log relative frequency (f |e) computed
from the latent-variable model as an additional feature in MERT. Furthermore, in line with
previous work (Galley et al., 2006) which compares minimal and composed rules, we find that
minimal grammars take a hit of more than 2.5 BLEU points on the development set, com-
pared to composed (hiero) grammars. The m = 1 spectral baseline with only rule indicator
features performs slightly better than the minimal grammar baseline, since it overtly takes
into account inside-outside tree combination preferences in the parameters, but improvement
is minimal with one latent state naturally and the performance on the test set is in line with
the MLE baseline.

On top of the baselines, we looked at a number of feature combinations and latent states
for the spectral and EM-estimated latent-variable models. For the spectral models, we tuned
MERT parameters separately for each rank on a set of parameters estimated from rule indi-
cator features only; subsequent variations within a given rank, e.g., the addition of lexical or
length features or smoothing, were evaluated with the same set of rank-specific weights from
MERT. For EM, we ran parameter estimation with 5 randomly initialized starting points for
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50 iterations; we tuned the MERT parameters with EM parameters obtained after 25th iter-
ations. Similar to the spectral experiments, we fixed the MERT weight values and evaluated
BLEU performance with parameters after every 5 iterations and chose the iteration with the
highest score on the development set. The results are averaged over the 5 initializations, with
standard deviation in parentheses.

Firstly, we can see a clear dependence on rank, with peak performance for the spectral and
EM models occurring at m = 16. In this instance, the spectral model roughly matches the
performance of the hiero baseline, but it only uses rules extracted from a minimal grammar,
whose size is a fraction of the hiero grammar. The gains seem to level off at this rank;
additional ranks seem to add noise to the parameters. Feature-wise, additional lexical and
length features add little, probably because much of this information is encapsulated in the
rule indicator features. For EM, m = 16 outperforms the minimal grammar baseline, but is
not at the level of the spectral results. All EM, spectral, and MLE results are statistically
significant (p < 0.01) with respect to the Min-Grammar baseline (Zhang et al., 2004), and
the improvement over the Hiero baseline achieved by the m = 16 rule indicator configuration
is also statistically significant.

The two estimation algorithms differ significantly in their estimation time. Given a feature
covariance matrix, the spectral algorithm (SVD, which was done with Matlab, and correlation
computation steps) for m = 16 took 7 minutes, while the EM algorithm took 5 minutes for
each iteration with this rank.

3.4.4 Analysis

Figure 3.5 presents a comparison of the non-terminal span marginals for two sentences in the
development set. We visualize these differences through a heat map of the CKY parse chart,
where the starting word of the span is on the rows, and the span end index is on the columns.
Each cell is shaded to represent the marginal of that particular non-terminal span, with higher
likelihoods in blue and lower likelihoods in red.

For the most part, marginals at the leaves (i.e., pre-terminal marginals) tend to score relatively
similarly across different setups. Higher up in the chart, the latent SCFG marginals look quite
different than the MLE parameters. Most noticeably, spans starting at the beginning of the
sentence are much more favored. It is these rules that allow the right translation to be preferred
since the MLE chooses not to place the object of the sentence in the subject’s span. However,
the spectral parameters seem to discriminate between these higher-level rules better than EM,
which scores spans starting with the first word uniformly highly. Another interesting point is
that the range of likelihoods is much larger in the EM case compared to the MLE and spectral
variants. For the second sentence (row), the 1-best hypothesis produced by all systems are
the same, but the heat map accentuates the previous observation.
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I go away .
(a) MLE

I ’ll bring it .
(b) Spectral m = 16 RI

I ’ll bring it .
(c) EM m = 16

I ’d like a shampoo and style .
(d) MLE

I ’d like a shampoo and style .
(e) Spectral m = 16 RI

I ’d like a shampoo and style .
(f) EM m = 16

Figure 3.5: A comparison of the CKY charts containing marginal probabilities of non-terminal spans
µ(X, i, j) for the MLE, spectral m = 16 with rule indicator features, and EM m = 16, for the two
Chinese sentences. Higher likelihoods are in blue, lower likelihoods in red. The hypotheses produced
by each setup are below the heat maps.

3.5 Related Work

The goal of refining single-category HPBT grammars or automatically learning the NT cat-
egories in a grammar, instead of relying on noisy parser outputs, has been explored from
several different angles in the MT literature. Blunsom et al. (2008a) present a Bayesian model
for synchronous grammar induction, and place an appropriate nonparametric prior on the
parameters. However, their starting point is to estimate a synchronous grammar with mul-
tiple categories from parallel data (using the word alignments as a prior), while we aim to
refine a fixed grammar with additional latent states. Furthermore, their estimation procedure
is extremely expensive and is restricted to learning up to five NT categories, via a series of
mean-field approximations.

Another approach is to explicitly attach a real-valued vector to each NT: Huang et al. (2010)
use an external source-language parser for this purpose and score rules based on the similarity
between a source sentence parse and the information contained in this vector, which explicitly

56



requires the integration of a good-quality source-language parser. The EM-based algorithm
that we propose here is similar to what they propose, except that we need to handle tensor
structures. Mylonakis and Sima’an (2011) select among linguistically motivated non-terminal
labels with a cross-validated version of EM. Although they consider a restricted hypothesis
space, they do marginalize over different derivations therefore their inside-outside algorithm is
O(n6

). In the syntax-directed translation literature, there have been efforts to relax or coarsen
the hard labels provided by a syntactic parser in an automatic manner to promote parameter
sharing (Venugopal et al., 2009, Hanneman and Lavie, 2013), which is the complement of our
aim in this paper.

The idea of automatically learned grammar refinements comes from the monolingual parsing
literature, where phenomena like head lexicalization can be modeled through latent variables.
Matsuzaki et al. (2005) look at a likelihood-based method to split the NT categories of a
grammar into a fixed number of sub-categories, while Petrov et al. (2006) learn a variable
number of sub-categories per NT. The latter’s extension may be useful for finding the optimal
number of latent states from the data in our case.

The question of whether we can incorporate additional contextual information in minimal
rule grammars in MT via auxiliary models instead of using longer, composed rules has been
investigated before as well. n-gram translation models (Mariño et al., 2006, Durrani et al.,
2011) seek to model long-distance contextual dependencies and reorderings through n-grams.
The n-gram framework allows the use of heuristic smoothing techniques from language model-
ing (Chen and Goodman, 1999) to indirectly capture context low-dimensionally e.g., Vaswani
et al. (2011) use a Markov model in the context of tree-to-string translation, where the pa-
rameters are smoothed with absolute discounting (Ney et al., 1994) (while in our instance we
capture this smoothing effect through low rank or latent states), and while more principled
approaches based on Pitman-Yor priors achieve good performance (Feng and Cohn, 2013), the
n-gram methods are still limited by their unidirectional (i.e, left-to-right) notion of context and
their reliance on smoothing as a proxy to reasoning about the effect of context dimensionality
on translation.

Hsu et al. (2009) presented one of the initial efforts at spectral-based parameter estimation
(using SVD) of observed moments for latent-variable models, in the case of Hidden Markov
models. This idea was extended to L-PCFGs (Cohen and Collins, 2014), and our approach
can be seen as a bilingual or synchronous generalization.

3.6 Summary

In this chapter, we presented an approach to refine synchronous grammars used in MT by
inferring the latent categories for the single non-terminal in our grammar rules, and proposed
two algorithms to estimate parameters for our latent-variable model. By fixing the synchronous
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derivations of each parallel sentence in the training data, it is possible to avoid many of
the computational issues associated with synchronous grammar induction. Improvements
over a minimal grammar baseline and equivalent performance to a hierarchical phrase-based
baseline are achieved by the spectral approach. For future work, we will seek to relax this
consideration and jointly reason about non-terminal categories and derivation structures by
devising estimation algorithms that can operatre over forests and not just fixed synchronous
derivation trees.

Additionally, while the translation inventory does not grow in size since we handle context via
auxiliary models, these models can still contain a very large number of parameters (§3.2). It
would be useful to investigate another formulation of the spectral approach that is based on
another assumption known as the “pivot assumption” (Cohen and Collins, 2014), where the
actual parameters of the latent variable model (and not similarity transforms, as explained
in §3.2) are recovered; in this formulation, it would be easier to impose sparsity-inducing
regularization since we are dealing with the actual parameters. Recently, a clustering-based
approach (Narayan and Cohen, 2015) was used to also induce sparser parameters, and this
variant is also suitable for investigation in the MT setting.

The contributions are: a generalization of latent PCFGs (Matsuzaki et al., 2005) to latent
SCFGs; an efficient tensor-based version of the inside-outside algorithm; an empirical demon-
stration that adding marginal rule probabilities from this model as features in the traditional
linear translation model (Och and Ney, 2004) improves translation quality; and two algorithms
that learn these latent categories (equivalently, the latent space) from the data without any
externally imposed syntactic labels.
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Chapter 4

Low-Dimensional Embeddings of

Context

“There is nothing insignificant in the world. It all depends on the point of
view.”

— Johann Wolfgang von Goethe

In most scenarios during test time, the MT decoder has access to an entire document (or at
least the entire sentence) prior to translation; it is thus absurd that traditional translation
models use very little, if any, of the large amounts of observable context. Recent work has
shown that extreme source-side context can be leveraged to great effect to improve translation
(Devlin et al., 2014), as long as the representation of this context is manageable (which the
authors achieve through neural network-based representations). Hence, in contrast to §3,
where we compute low-dimensional representations of translation rules expressed in terms of
their (high-dimensional) featurized context, this chapter concentrates on modeling the source
context directly in a low-dimensional space.1 While neural networks are amazingly expressive,
they are notoriously difficult to train (Pascanu et al., 2013, inter alia), and instead we propose
a simple method to recover a linear low-dimensional subspace which leverages the multi-view
assumption (§2.2), where we use multiple “views” of the data to learn an appropriate low-
dimensional basis in order to manage extremely amounts of context. As in §3, we use minimal
grammars instead of composed ones and shift the context dependence to the lower-dimensional
space, which makes estimation and inference more tractable.

1 Including target context breaks one of the key independence assumptions made by phrase-based translation
models, that translations of source phrases are conditionally independent of each other, given the source
sentence. Target context is unobserved during evaluation, so conditioning upon this information directly in
the translation model is computationally more difficult. Outside of the translation model, the language model
also takes care of target-side context dependencies.
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The basic setting in which we apply our low-dimensional context representations is reminis-
cent of “word-sense disambiguation” for MT (Carpuat, 2008), in that we condition on source
contextual information to select the appropriate translation rule (i.e., source-target phrase
pair) to be used in that context. Since we concentrate on selecting appropriate translations
for source phrases, we use the term “phrase-sense disambiguation” (PSD) instead. Unlike most
previous work, we hypothesize that by learning an appropriate low-dimensional basis first, we
avoid significant feature engineering, and can take advantage of the reduced sample complex-
ities when learning supervised models in the low-dimensional space. In order to learn such
a basis for representing context, we primarily make use of CCA, but also compare against a
bilingual generalization of the skip-gram model (Mikolov et al., 2013) that learns representa-
tions of phrase pairs instead of words (§4.1.1). Using the recovered context representations,
we then investigate a number of models that use the target-side translations of source phrases
as supervision (§4.1.2), with the aim being to take the context of a source phrase at test time,
project it into the low-dimensional context space, and then reason about potential translation
options directly in this space.

The evaluation of our proposed models is divided into several sections. First, we look at
the impact of various hyperparameter choices related to the low-dimensional context, keeping
a disambiguation model fixed (§4.2.2). Then, a variety of disambiguation models and hy-
perparameter settings are investigated using mean reciprocal rank (MRR, §4.2.3), including
comparisons with disambiguation models that operate in the original high-dimensional space
(§4.2.4). Last, an extrinsic evaluation (§4.2.5) measures the effect of these models under a
number of different conditions and scenarios in terms of BLEU, by adding the model scores to
an end-to-end MT setup. We found that while a low-dimensional context embedding does, in
fact, exist, it is maximally captured by the language model (LM) and the surface-level relative
frequency estimates (RFEs). For this reason, it is difficult to translate gains in MRR to gains
in BLEU, but the low-dimensional models consistently do better than the high-dimensional
ones in the BLEU experiments.

4.1 Phrase-Sense Disambiguation for MT

Focusing on the problem of sense disambiguation allows us to frame core translation op-
erations in terms of a standard classification problem. To select amongst an inventory of
phrasal rules, most current translation systems rely on surface-level relative frequency esti-
mates (Koehn et al., 2003), as well as conditional lexical estimates that are computed on the
words that make up a translation rule (and estimated via EM). These translation rule fea-
tures are context-independent and therefore ignore the surrounding linguistic source context
that is crucial for translation, although the LM mitigates this defect by handling long-range
contextual dependencies on the target side. Thus, by developing models that can condition
on context information in order to disambiguate various translation options, we can directly
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investigate the impact that context, particularly of the low-dimensional kind, can have on
translation models.

Our setup is similar to that of Ch. 3 in that we fix a fix a minimal derivation for a sentence
pair a priori using the grammar extractor of Zhang et al. (2008), except we extract translation
rules without any non-terminals. Thus, when referring to the translation rules in this setup, we
use the terms “translation rule” and “phrase pair” interchangeably. To achieve this objective,
we expand rules containing non-terminals by replacing the NTs on the RHS with child rules,
up to a maximum length of five words on the source-side. Sentence pairs with difficult and/or
noisy alignments may yield long phrase pairs by this procedure, and for such cases we do not
include the translation rule in our phrasal inventory.2 In order to avoid re-implementation of
a decoder for test time, we add to this phrasal inventory two glue rules that combine NTs in
a monotonic or inverted fashion, making our grammar essentially an inversion transduction
grammar (ITG; Wu, 1997). These additions allow us to use the hypergraph algorithm from
§3.2.1 and compute scores directly over the parse forest. By ensuring a fixed segmentation for
each sentence pair (derived from the minimal derivation), we can sidestep estimation issues
that would occur from considering an exponential number of possible segmentations (in the
sentence length).

4.1.1 Low-Dimensional Context

In order to compute a low-dimensional representation of the context in which phrase pairs
occur, we primarily make use of CCA. For occurrences of translation units in a parallel corpus,
the source-side context of the rule can be split into two views: a natural one is context that
occurs before the rule and context that occurs after. While each of the views is assumed to
contain sufficient predictive power, by applying CCA to recover a shared latent space with a
basis such that the projected points from the two views are maximally correlated, we compute
the directions in which both views strongly agree and also reduce noise, since the assumption
is that the noise in each view is uncorrelated. The “context CCA” recovers a pair of projection
matrices (i.e., matrices that project sparse context vectors to their dense low-dimensional
representations), one for the left context and one for the right context. These matrices project
the left and right context into a shared latent space, and we concatenate the resulting low-
dimensional vectors to yield a low-dimensional representation for the context in which a phrase
occurs (Foster et al., 2008).

Let X 2 RN⇥d and Y 2 RN⇥d

0 contain our two views, where N is the number of translation
rule tokens in our training corpus and d, d0 are the dimensionalities of the left and right context
spaces respectively. Recall that regularized CCA can be computed by applying a rank-k SVD

2 While this admittedly results in incomplete sentence pairs, the rate at which such phrase pairs are extracted
is relatively small.
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on the following matrix (§2.2.1):

(XTX + �1I)

�1/2XTY (Y TY + �1I)

�1/2

where �1 > 0 is a regularization parameter that ensures non-singular covariance matrices. The
square root inverse (SRI) operation has the effect of whitening the X and Y spaces, since it is
a normalization by the variances and covariances of individual features. However, computing
the SRI of the empirical covariance matrices can be an expensive operation, especially if the
original feature dimensionalities d, d0 are very large. We thus apply a number of approximations
in lieu of computing these quantities:

• identity (ident): (XTX+�1I)

�1/2
= I and (Y TY +�1I)

�1/2
= I. In this approximation,

we ignore any the feature variances and covariances, and simply compute the SVD of
XTY . The regularization parameter �1 is also ignored. Note that this approximation to
the CCA is used in Ch. 4 (where the two views are inside and outside trees).

• diagonal approximation (diag): instead of considering the full XTX (or Y TY ) empirical
covariance matrix, we only consider the regularized diagonal terms: (XTX +�1I)

�1/2
=

(diag(XTX) + �1I)

�1/2, and similarly for Y . In other words, feature covariance effects
are ignored and only the feature variances are taken into account. Computing the SRI
of a diagonal matrix is linear in the length of the diagonal.

• randomized (rand): computing the full SRI of X and Y is simply too costly for our
problems, where feature dimensionalities are on the order of 10

5. Instead, we use the
randomized algorithm presented by Mineiro and Karampatziakis (2014), which uses a
randomized range finder to iteratively compute the (orthogonal) column space or range
of the data matrices X and Y , after which a Cholesky decomposition and SVD is used
to find the canonical correlations. The behavior of randomized range finders has been
well-analyzed in the literature (Halko et al., 2011) and a reasonable approximation can
be achieved with oversampling and multiple passes through the data.

4.1.2 Disambiguation Models

Naturally, the CCA computation to yield the low-dimensional context representations is a
rank-reduced one; assuming a rank-k context CCA, the resulting dimensionality of the con-
catenated low-dimensional context representations is 2k. We can use these low-dimensional
representations in a number of different ways to learn supervised models with regularization
parameter �2 > 0:

• 2-step CCA (cca): similar to Dhillon et al. (2012), we compute a regularized rank-
m CCA between the concatenated 2k-dimensional context representations (an N ⇥ 2k
matrix when considering the entire training data) and a sparse, high-dimensional matrix
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corresponding to phrase pair tokens, which we call Z. Z is an N ⇥P matrix, where P is
the number of phrase pair types in the training corpus. Each row in Z contains only one
non-zero value, indicating the identity of the phrase pair. The result is a latent space
where the two sets of random variables (corresponding to context and phrase pairs) are
maximally correlated, along with projection matrices from the 2k and P -dimensional
spaces to the latent m-dimensional space. Translation options are then ranked through
a nearest neighbor model in the m-dimensional space, where we use the cosine similarity
between the m-dimensional phrase pair and context representations for similarity. The
idea is that phrase pairs will reside relatively close to the contexts they occurred in
during training in the m-dimensional space, and scoring phrase pairs now becomes a
question of projecting new context to the same space and and querying nearby phrase
pairs.3

• 2-step CCA with Matching Model (cca+mm): phrase pair and context representations
can also act as inputs to a simple multilayer perceptron (MLP), as is done in Tu et al.
(2015). The MLP is trained as a regularized binary classifier (with hyperparameter
�3 > 0) with a tanh non-linear activation function for the input-hidden layer and a
logistic activation function for the hidden-output layer, and takes a concatenated context-
translation rule representation in the low-dimensional space (of length 2m) to predict
whether the translation rule is the correct one to use in the context or not. Since
we have a fixed translation inventory that is extracted from the training corpus before
representation estimation, it is easy to convert our training corpus into one that can
be used to train the MLP. For each of the N translation rule occurrences, we provide
as negative examples all other representations of translation rules with the same source
phrase, concatenated with the context at that occurrence. For most phrase pairs there is
more than one negative example (i.e., there are more than two translation rules for that
source phrase), and so we compensate for the class imbalance problem by oversampling
the positive examples, such that the overall number of positive and negative examples
provided for MLP learning is the same. The number of hidden units in the MLP is an
additional parameter.

• Ordinary Least Squares (ls): by treating the phrase pair token matrix Z as the depen-
dent variable and the concatenated low-dimensional representations [X; Y ] in a linear
regression setup, we can compute the regularized normal equations ([X; Y ]

T

[X; Y ] +

�2I)

�1
[X; Y ]

TZ, which reveal parameters that minimize squared error and is akin to
finding the best projections of Z onto the space spanned by the low-dimensional context
representations. The computation of the normal equations involves the inversion of a
2k ⇥ 2k matrix, which is generally small for our experimental settings (k = 50 to 200).

3 Why not just compute a single CCA between the concatenated left-right context in the original d + d0-
dimensional space and the phrase pair matrix in the P -dimensional space? The 2-step approach has the
advantage of reduced sample complexity (Dhillon et al., 2012) and the additional flexibility of defining a
context latent space of different dimension than the context-translation unit latent space.
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Note that this approach is similar to the 2-step CCA method, except we do not take
into account the variance of the high-dimensional translation rule space (§14).

• Online Least Squares (ls-online): this model is very similar to ls in that we minimize
a regularized squared loss objective, with the independent variables once again being
the concatenated low-dimensional representations [X; Y ], but the objective function is
optimized using a variant of adaptive gradient descent (Duchi et al., 2011). The model
is also similar to a maximum entropy classifier (Berger et al., 1996), which is a popular
approach in natural language processing, except maximum entropy classifiers minimize
a multiclass generalization of the log loss, which involves computing an expensive nor-
malization factor that is avoided in our case.4 Lastly, we can also add a hidden layer
with a tanh non-linearity to this setup, making this a simple single-layer MLP (mlp).
The number of hidden units in the MLP is an additional parameter.

The above models leverage the low-dimensional context from CCA (4.1.1), but we can also
use a suitable generalization of the skip-gram model for learning word vector representations.
The skip-gram model (sg) maximizes the following objective:

NX

i=1

p(c|p
i

) =

NX

i=1

|c|Y

j=1

exp(v

c

j

· v
p

i

)

P
W

w=1 exp(v

w

· v
p

i

)

(4.1)

where c is the context for a phrase p at position i and is a function of the phrase (usually
consisting of a window of source words before and after the phrase), and v

p

i

,v
c

j

are the low-
dimensional vector representations for the phrase pair p

i

and the particular context word c
j

.
As explained in Goldberg and Levy (2014), the context representations are distinct from the
word, or in this case phrase pair, representations. Thus, at the end of training we obtain
two sets of representations: one for the context words, and another for the translation rules
i.e., phrase pairs. To avoid the expensive normalization factor in Eq. 4.1, we use the negative
sampling technique which samples context words from an altered unigram distribution, using
5 negative samples5 and the default hyperparameters from the word2vec software in other
instances. Instead of maximizing Eq. 4.1 directly, we maximize the sum of the log probabilitiesP

N

i=1 log p(c|p
i

) using backpropagation via a distributed, asynchronous version of regularized
gradient descent (Mikolov et al., 2013) with hyperparameter �1 > 0. The resulting context
and phrase pair vectors can be used in a nearest neighbor model as is done with the 2-step
CCA, where the dot product is computed via cosine similarity.

4 See http://hunch.net/?p=547 for a discussion on why squared loss should be preferred to log loss.
5 The results were generally invariant to the number of negative samples.
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4.2 Evaluation

We evaluated the models presented in this chapter with the aim of eliciting several insights
into the nature of low-dimensional context and how it applies to MT. First, establish the best
settings to yield low-dimensional context spaces (§4.2.2); this objective entails experimenting
with the various approximations to the square-root inverse (§4.1.1) and also the context rank k
i.e., the size of the low-dimensional context space. Second, evaluate ways to leverage informa-
tion in this space to effectively re-rank translation options (§4.2.3) using the models presented
in §4.1.2; we vary hyperparameters associated with the supervised models. Third, establish
the efficacy of low-dimensional context compared to its high-dimensional counterpart (§4.2.4);
specifically, we compare our models against classifiers that minimize squared loss, trained on
the sparse, high-dimensional context. And fourth, determine whether the additional ranking
information helps in an end-to-end MT evaluation (§4.2.5), or if such information has already
been provided by existing features in the MT setup, like the LM and the RFE probabilities.
We also compared our linear CCA-based models to a phrase pair-based skip-gram variant
that uses nonlinear activation functions, to see if nonlinearities could improve the learned
representations and therefore the resulting supervised disambiguation models.

Except for the MT experiments, which are measured with BLEU (Papineni et al., 2002), we
used the mean reciprocal rank (MRR) as our primary evaluation metric. MRR is an intuitive
metric to evaluate ranking models, and we use it as an intrinsic evaluation on a heldout set
to understand the performance of our models without the additional complications of MT
systems, including optimizer instability (Clark et al., 2011) and the effect of the LM. The
MRR is computed in the following manner:

MRR =

1

N

NX

i=1

1

rank
i

Intuitively, if a ranking model achieves a higher MRR than another on a fixed evaluation
set, then it means (on average) the model ranks the correct answer higher than the other
model.

The software used during the evaluation was written primarily in Python, and has been released
as a package for broader consumption: CCA-MT6. Certain aspects of the computations were done
with specialized software. All SVD computations for the purposes of CCA as well as Normal
Equation evaluations were done in MATLAB. Vowpal Wabbit7 was used for our MLP matching
models in cca+mm, the ls-online models, and the sparse, high-dimensional ls-online
baselines. For the skip-gram model, we modified the version presented in word2vec

8 (Mikolov

6

https://github.com/asaluja/cca-mt

7

https://github.com/JohnLangford/vowpal_wabbit

8

https://code.google.com/p/word2vec/
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et al., 2013) to learn representations of phrase pairs by fitting parameters that maximize the
likelihood of source-side context. The modified version is also included in CCA-MT.

4.2.1 Corpora

Chinese-English (ZH-EN) was the chosen language pair for evaluation; in particular, we looked
at two different corpora. The first is the BTEC corpus, which is the same corpus used in Ch. 3
(§3.4), and we refer the reader to Table 3.1 for additional information regarding the corpus
and the evaluation sets it comes with. The second is the FBIS corpus9, with the NIST MT03
and MT06 evaluation sets used for development and testing purposes respectively. Corpus
statistics for this corpus are presented in Table 4.1. Unlike BTEC, which consists exclusively
of conversational speech, the FBIS corpus is primarily news commentary.

FBIS ZH-EN Words
TRAIN (SRC) 7.667M
TRAIN (TGT) 9.096M
DEV (SRC) 24.1K
DEV (TGT) 29.2K
TEST (SRC) 38.8K
TEST (TGT) 46.4K

Table 4.1: FBIS corpus statistics (in words). For the target DEV and TEST statistics, we take the
first reference (four references total).

The BTEC corpus is used in all evaluations, and is the only corpus used in our context
analysis (§4.2.2). The FBIS corpus is utilized to evaluate promising disambiguation models
and compare against high-dimensional context. Both corpora are evaluated on during the
MT experiments. For the MRR evaluations, we selected a random (but fixed across model
variations so that the comparisons are meaningful) 5% held-out subset of the training data. For
BTEC, after filtering for phrase pairs that we did not estimate representations for (see §4.2.3
for the criteria used to filter phrase pairs) and source phrases that have only one translation,
the heldout set consists of more than 10K examples. For FBIS, applying the same criteria
results in more than 166K examples in the heldout set.

4.2.2 Context Experiments

For the context experiments, we looked at the impact of the SRI approximations as well as
the size of the low-dimensional space. In order to form a meaningful comparison, we fixed
a number of hyperparameters related to the context as well as the disambiguation model.

9 LDC2003E14
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A window size of 5 context words (features) on each side were used (fewer words if at the
beginning/end of a sentence or if the sentence is short), with the positions of the context
words taken into account (i.e., not a bag-of-words model). A minimum context word count
of three words is imposed; if below this threshold, the words are used for position-dependent
OOV representation estimation. For BTEC, these thresholds result in the removal of almost
27K features from the left context and more than 29K features from the right context, leaving
high-dimensional feature spaces of size d = 14, 612 for the left context and 15, 769 for the right
context.

For the disambiguation model, we select ls since, unlike the 2-step CCA variants, the disam-
biguation is not dependent on the SRI approximation, and is easy and fast to compute. We
vary the rank for the three approximations, and fix �1 = 2 and �2 = 1. Figure 4.1 presents the
results as the context CCA rank k is varied. Overall, we find that while there is a consistent
(but small) increase in MRR as we vary the rank, there is also little to separate the approxi-
mation techniques (less than 0.005 MRR across all ranks). Since the diagonal approximation
works well in the low-dimensional regimes (k = 25, 50, 100), we fix this approximation for all
subsequent experiments.

4.2.3 Model Variants

Next, we looked at the various disambiguation models proposed in §4.1.2. For the BTEC
corpus, we varied the context CCA rank k = 50, 100 but found that increasing k beyond
50 provided only a small improvement to the MRR scores. Thus, k is fixed to 50; other
context-related settings (window size, minimum count thresholds) remain the same as in §4.2.2.
Furthermore, we prune all singleton phrase pairs, and for a given source phrase, keep only the
top 20 phrase pairs sorted by forward RFEs. The result is that we estimate parameters for
12,791 phrase pairs in the BTEC corpus.

Table 4.2 presents results with varying hyperparameters and/or ranks for BTEC. For the cca
and cca+mm setups, the rank of the CCA between the concatenated low-dimensional context
and the phrase pair matrix is varied, although note that when rank = 100, we simply bi-
orthogonalize the spaces and no rank reduction is done. The cca+mm setup has an additional
rank parameter and hyperparameter �3, which dictate the MLP matching model that is built
on top of the 2-step CCA. For the ls, ls-online, and mlp setups, the rank is 101 because
in addition to the concatenated 2k-dimensional context, we add a bias term. The ls-online
and mlp setups have much smaller regularization strengths since the regularizer is added on
a per-example (online) basis, and thus has a different interpretation from the regularization
hyperparameters in the other setups. Lastly, the hyperparameter for the sg setup has a similar
interpretation to the ls-online and mlp setups, and is set to the word2vec default.

The cca model is clearly inferior, but with the help of the matching model we can achieve
performance roughly equivalent to the ls model. Using a different optimization algorithm
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Figure 4.1: MRR as a function of rank for the three different square-root inverse approximations,
with an ls model as the disambiguation model. The MRR is relatively invariant to the approximation
used.

through the ls-online setup, we can get a slight improvement in MRR. Interestingly, adding
a hidden layer to this setup, thus making it akin to an mlp model, does not seem to help;
even adding 10 hidden layers decreases the MRR. Lastly, the sg model performs much bet-
ter than the cca setup, despite both models using a nearest neighbor predictor, indicating
that the additional non-linearities added by the sg model are useful in ranking translation
options.

Table 4.3 presents a similar set of results for the FBIS corpus. For the FBIS experiments, the
hyperparameters used for the context are different since the corpus is much larger in terms of
both tokens and types, so care must be taken to make computations tractable. We consider a
window size of 4 words on each side, and increase the minimum context word count to 6 (from
3 in the BTEC case). The resulting left and right context dimensionalities are d = 99, 091 and
d0 = 96, 745 respectively. Unlike BTEC, where we did not find much improvement beyond
k = 50, here we present results with varying Context CCA ranks (k = 50, 100), since the
magnitude of the effect on MRR is larger. For the phrase pairs, we prune all phrase pairs that
occur less than three times in the corpus, and as with BTEC, keep only the top 20 phrase
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Parameters Rank m MRR

cca
�2 = 1 50 0.616
�2 = 1 100 0.654

cca+mm
�2 = 1, �3 = 1 ⇥ 10

�5 100,25 0.820
�2 = 1, �3 = 1 ⇥ 10

�5 100,50 0.824
ls �2 = 1 101 0.826

ls-online
�2 = 1 ⇥ 10

�5 101 0.815
�2 = 1 ⇥ 10

�8 101 0.834

mlp
�2 = 1 ⇥ 10

�8 101,10 0.826
�2 = 1 ⇥ 10

�8 101,25 0.812
sg �1 = 2.5 ⇥ 10

�2 50 0.799

Table 4.2: MRR results on the 5% heldout set for the BTEC corpus (roughly 10K examples). The
context CCA rank k = 50 in all cases. A naive 2-step CCA approach (cca) does not perform well, but
by utilizing the supervision in a more direct way, we get significant improvements. The best performing
setup (ls-online) is in bold.

k Parameters m MRR

cca
50 �2 = 1 50 0.389
50 �2 = 1 100 0.426
100 �2 = 1 100 0.420

cca+mm
50 �2 = 1, �3 = 1 ⇥ 10

�5 100,25 0.569
50 �2 = 1, �3 = 1 ⇥ 10

�5 100,50 0.68
100 �2 = 1, �3 = 1 ⇥ 10

�5 100,50 0.668

ls
50 �2 = 1 101 0.728
100 �2 = 1 101 0.730

ls-online
50 �2 = 1 ⇥ 10

�5 101 0.657
50 �2 = 1 ⇥ 10

�8 101 0.725
100 �2 = 1 ⇥ 10

�8 101 0.727
mlp 50 �2 = 1 ⇥ 10

�8 101,10 0.702

sg
50 �1 = 0.025 50 0.658
100 �1 = 0.025 100 0.694
200 �1 = 0.025 200 0.710

Table 4.3: MRR results on the 5% heldout set for the FBIS corpus (roughly 166K examples). Recall
that k refers to the context CCA rank, and m refers to the rank of the disambiguation model. The ls
and ls-online models once again perform quite strongly.

pairs sorted by forward RFEs. Correspondingly, we estimate phrase pair representations for
108,958 phrase pairs.
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Regularization 1 ⇥ 10

�2
1 ⇥ 10

�5
1 ⇥ 10

�8

BTEC `1 0.476 0.625 0.812
`2 0.696 0.812 0.811

FBIS `1 0.271 0.271 0.726
`2 0.475 0.654 0.718

Table 4.4: MRR results on the 5% heldout sets for the high-dimensional mlr models. The models
in bold are also evaluated for BLEU impact in §4.2.5.

4.2.4 High-Dimensional Comparison

One of the objectives of the evaluation is to explicitly compare against an ls-online model
which operates in the original, high-dimensional space; specifically, each example is the con-
catenation of the d-dimensional left context space and the d0-dimensional right context space,
resulting in a sparse, d + d0-dimensional vector. As with our ls-online models that predict
phrase pairs based on the low-dimensional context representations, we use Vowpal Wabbit to
minimize a regularized squared loss objective using adaptive stochastic gradient descent. For
the BTEC corpus, d + d0 = 30, 381, and for the FBIS corpus, d + d0 = 195, 836.

Table 4.4 presents results for both corpora. We vary the `2 regularization strength, and
also experiment with a sparsity-inducing `1 regularization term with varying strengths due to
the high-dimensional nature of the model. For both corpora, the high-dimensional baseline
performs surprisingly well; on BTEC, this model is superior to the cca approach and even
slightly better than the sg method. Regardless of regularization strength, the ls-online
model, which is the most similar setup to the high-dimensional case, always does better. On
FBIS, the high-dimensional baselines also do quite well, and in fact do better than most of the
disambiguation model setups. We thus also evaluate their end-to-end MT impact in §4.2.5 by
evaluating the bolded models from Table 4.4.

4.2.5 MT Experiments

We used the cdec decoder (Dyer et al., 2010) to extract word alignments from a parallel
corpus, tune the MT decoder feature weights, and for decoding. For comparison, we built two
baselines: the primary one is the minimal grammar baseline (minimal), which is a setup with
the same grammar as our models, but which doesn’t score rules, as our models do in a context-
dependent fashion. The hiero system uses a grammar extracted by applying the commonly
used heuristics (Chiang, 2007). Each rule is decorated with two lexical and phrasal features
corresponding to the forward (e|f) and backward (f |e) conditional log frequencies, along with
the log joint frequency (e, f), the log frequency of the source phrase (f), and whether the
phrase pair or the source phrase is a singleton. Weights for the language model (and language
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model OOV), glue rule, and word penalty are also tuned. The minimal baseline maintains
the same set of weights. For additional comparison, we also compare against the sparse,
high-dimensional ls-online models and evaluate how they perform in an MT setting.

For the BTEC experiments, the language model is a 3-gram model extracted from the target-
side of the training data, and for the FBIS corpus we use a very large, 5-gram model trained on
the English Gigaword corpus. Both language models are built using KenLM (Heafield, 2011).
To tune the MT feature weights, we make use of MIRA (Chiang, 2012), which is a large-margin
learning technique. All MT tuning runs were repeated three times to control for optimizer
instability (Clark et al., 2011), and the average BLEU scores on the development and test sets
are stated, with standard deviation in parentheses. Statistically significant improvements over
the minimal grammar baselines are bolded (p < 0.05).

Table 4.5 presents the BLEU results for the BTEC corpus. In all instances, we score a phrase
pair in its context using our models, but actually output the reciprocal rank 1

rank

i

for the phrase
pair, where we rank translation options for each source phrase. For example, if the phrase
pair “ ‘el perro ||| a dog” ’ is scored just below “ ‘el perro ||| the dog” ’ and the source phrase “ ‘el
perro” ’ has only two translation options, the former will receive a score of 0.5 and the latter
will receive a score of 1. Scoring phrase pairs in terms of reciprocal rank normalizes any scale
or range differences that may arise from the different variations. In Table 4.5, we find that
the ls and ls-online setups, which performed fairly well in terms of MRR, do not improve
on the baseline noticeably in terms of BLEU. In fact, along with the sg representations, these
approaches do not do as well as the ls-online high-dimensional model. Surprisingly, the cca
and cca+mm models perform quite strongly in terms of BLEU.

With the cca and cca+mm setups, we added some variants when writing out the scores,
including an indicator feature for the best-scoring translation for a given source phrase (best),
and passing the raw score through a logistic function (logit). These additions improved scores
marginally for the cca model, but not for the cca+mm one, so we only state results for the
former in Table 4.5. Overall, our best setup achieves a 0.72-BLEU point improvement over
the corresponding minimal baseline. Unlike the results in §3.4, none of the setups are able to
get close to the hiero BLEU scores. The weights after MIRA training are also instructive: for
BTEC, while the context-based score gets a relatively high weights (0.20–0.25), the LM weight
is even higher (more than 0.70). Interestingly, while the high-dimensional ls-online models
were very competitive in terms of MRR, they do not improve upon the minimal baseline in
a significant manner. Table 4.6 presents results for the FBIS corpus. The high-dimensional
baseline in this instance does worse than the minimal baseline, and the CCA variants (cca,
cca+mm) do not statistically improve upon this baseline. However, the skip-gram model does
surprisingly well (+1.04 BLEU), given that other models do slightly better in terms of MRR,
and both this model as well as the ls model statistically improve upon the baseline. These
gains can either be attributed to jointly learning the low-dimensional context and phrase pair
representations instead of the two-stage learning procedure adopted for the other models, or in
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BLEU
Setup Dev Test

Baselines
hiero 46.58 (0.26) 57.04 (0.47)
minimal 42.80 (0.29) 51.40 (0.06)
High-Dim `2 = 1 ⇥ 10

�5 42.81 (0.07) 51.85 (0.31)

Variations

cca k = 50, m = 100, �1 = 2, �2 = 1 43.15 (0.13) 52.01 (0.27)
cca+mm k = 50, m = 100+25, �1 = 2, �2 = 1, �3 =

1 ⇥ 10

�5
43.05 (0.03) 51.94 (0.20)

ls k = 50, m = 101, �1 = 2, �2 = 1 42.86 (0.43) 51.52 (0.22)
ls-online k = 50, m = 101, �1 = 2, �2 =

1 ⇥ 10

�8
42.62 (0.05) 51.59 (0.35)

sg k = 50, m = 50, �1 = 2.5 ⇥ 10

�2 43.14 (0.10) 51.67 (0.18)

Additions
cca+best 42.99 (0.13) 52.12 (0.14)
cca+logit 43.12 (0.26) 52.09 (0.41)
cca+best+logit 42.91 (0.13) 52.09 (0.21)

Table 4.5: Results in BLEU on the BTEC development and test sets. All MIRA tuning runs were
repeated 3 times, with the mean score reported (standard deviation in parentheses). Results in bold
are statistically significant improvements over the minimal baseline (p < 0.05). While only two results
are statistically significant at this level, several other setups are significant at the p < 0.10 level.

BLEU
Setup Dev Test

Baselines
hiero 34.57 (0.39) 30.26 (0.43)
minimal 28.87 (0.07) 23.98 (0.31)
High-Dim `1 = 1 ⇥ 10

�8 28.65 (0.48) 23.73 (0.65)

Variations

cca k = 50, m = 100, �1 = 2, �2 = 1 29.02 (0.11) 24.03 (0.24)
cca+mm k = 50, m = 100+50, �1 = 2, �2 = 1, �3 =

1 ⇥ 10

�5
29.17 (0.45) 24.04 (0.29)

ls k = 100, m = 201, �1 = 2, �2 = 1 29.50 (0.21) 24.66 (0.41)
ls-online k = 100, m = 201, �1 = 2, 1 ⇥ 10

�8 28.95 (0.90) 24.16 (0.50)
sg k = 100, m = 100, �1 = 2.5 ⇥ 10

�2 29.46 (0.37) 25.02 (0.08)

Table 4.6: Results in BLEU on the NIST MT03 and MT06 sets, using the FBIS corpus as a training
set. All MIRA tuning runs were repeated 3 times, with the mean score reported (standard deviation
in parentheses). Results in bold are statistically significant improvements over the minimal baseline
(p < 0.05). Unlike Table 4.2, we do not provide results for the additions since it was found that
these elaborations do not help for this corpus. Note that the result of the high-dimensional baseline is
significantly worse than the minimal baseline.

terms of the non-linearity used for the hidden layer, since in general adding such non-linearities
allows for better function approximation.
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MRR
Feature BTEC FBIS
LM 0.900 0.748
P (f |e) 0.435 0.414
P (e|f) 0.816 0.723
LM + P (f |e) 0.82 0.692
LM + P (e|f) 0.911 0.845

Table 4.7: MRR results on the 5% heldout set using basic features available to an MT decoder.
Surprisingly, these features perform very strongly and better than any of the proposed models (see
Tables 4.2 and 4.3), which suggests that our low-dimensional disambiguation models are primarily
capturing information that is similar to the existing features.

Given the relatively high MRR scores achieved by the proposed models, it is somewhat sur-
prising that the BLEU gains are quite small. Furthermore as noted above, certain setups
that perform well in terms of MRR (Tables 4.2, 4.3, and 4.4) do not necessarily do well in
terms of BLEU. In order to understand the nature of these BLEU gains, we decided to eval-
uate the MRR on the same heldout set, but this time using information or scores that are
available to an MT system during decoding (i.e., the language model scores) or based on
surface-level RFEs. Table 4.7 presents the MRR scores of these features on both the BTEC
and FBIS corpora. When combining score information e.g., “LM + P (e|f)”, we weight each
term equally. The results show that the LM feature alone is better than any disambiguation
model, low-dimensional or otherwise, and suggests that the disambiguation models capture
information already contained in existing MT features, like the RFEs or the LM; even though
many disambiguation models score well in terms of MRR, the BLEU gains are minimal. This
effect is stronger on BTEC than FBIS, and the weight of the LM feature after MIRA train-
ing is indicative: greater than 0.70 on BTEC, whereas on FBIS it is in the 0.15-0.20 range.
Furthermore, this hypothesis may also explain why models that may score relatively lower in
terms of MRR perform relatively well in terms of BLEU (like cca on the BTEC corpus, and
sg on the FBIS corpus): they are providing information that is relatively more orthogonal to
the LM and RFE scores than other models.

4.3 Related Work

Using context to drive disambiguation decisions in MT has been looked at from several angles,
but Carpuat and Wu (2005) were the first to use word-sense disambiguation techniques, by
predicting the HowNet (Chinese WordNet) sense of a word using WSD, and then using the
English gloss of the HowNet sense as the model’s predicted translation. However, they do not
get improvements. Chan et al. (2007) managed to get better translations by using a multiclass
SVM-based model and integrating this model by adding additional features in a traditional
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MT setup; unlike Carpuat and Wu (2005), the same data was used to train the disambiguation
model as was used to train the translation model (phrase pair extraction, feature estimation).
They evaluate on FBIS, and get a small (+0.57 BLEU) but statistically significant improve-
ment. A follow-up work by Carpuat and Wu (2007) however, did perform better by utilizing
several improvements, for example multi-word phrasal lexical disambiguation and a training
regime integrated into the overall framework. They show a small (+0.5 BLEU), but statis-
tically significant improvement on BTEC. Some of these ideas have subsequently been used
for specific applications in MT, e.g., suggesting translations for OOV words (Daumé III and
Jagarlamudi, 2011) or identifying when words obtain new senses due to a change in domain
(Carpuat et al., 2013).

In these works as in our models, features are extracted from the source sentence only, and this
idea has also been used in approaches (Stroppa et al., 2007, Gimpel and Smith, 2008, He et al.,
2008) that enrich the standard linear translation setting by adding source context features and
tuning their weights, along with the weights of standard MT features like the relative phrasal
frequency estimates and the language model, using standard algorithms like MERT (Och,
2003). While some of these approaches have been effective (potentially due to the intrinsic
dimensionality of context), this line of work has in general achieved mixed results because the
low-dimensional view is never explicitly leveraged. Most of these models are heavily dependent
on high-dimensional lexical features and manually-defined coarser features like part-of-speech
(POS) tags, and minimal effort is made to reason about context in a lower-dimensional space
or about translation rules (in terms of context) in such spaces. Furthermore, PSD is carried
out on top of a massive, heuristically-extracted phrase table, where much of the local context
is incorporated within large translation rules, instead of a minimal grammar where the context
can be more directly handled by auxiliary models.

There has also recently been a spurt of research that uses neural network models to either learn
phrase pair representations directly in an end-to-end setup (Kalchbrenner and Blunsom, 2013,
Cho et al., 2014), or learn compact representations of the context (Devlin et al., 2014, Tu et al.,
2015), which is then conditioned on downstream for translation purposes. Cho et al. (2014) use
an autoencoder framework with a recurrent neural network (RNN) on either end which builds a
dense, continuous representation as we scan through the words that constitute a phrase. They
score phrase pairs from an existing model using this approach, although in theory it is possible
to completely replace the existing translation model with their autoencoder. Kalchbrenner
and Blunsom (2013) have a similar setup, except they use a convolutional neural network
to compute a representation of the soure sentence. The approach of Devlin et al. (2014)
essentially augments a neural network language model by taking into account large windows of
source-side context, using the word alignments to incorporate the dependencies. They achieve
significant gains through this approach, a +3 BLEU gain over a state-of-the-art system. In
Tu et al. (2015), the authors use a convolutional neural network to come up with dense, low-
dimensional representations of both the entire sentence in which a source phrase occurs as well
as the phrase pair itself, and then use these representations as an input into an MLP matching
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model, which is where we derive our inspiration for using the matching model. In addition,
they propose a curriculum learning strategy where training examples are sorted from easiest
to hardest (using heuristics to judge difficulty), but with all of these elaborations their gains
are on the order of 1 BLEU point. All of these approaches once again are carried out on top
of a large, composed phrase table or grammar.

More recently, Luong et al. (2015) make use of attention-based models (originally proposed in
the image recognition domain) in an end-to-end setup to focus on parts of the source sentence
that are relevant for translation of target words. The attention model can be seen as a type
of alignment model10, since it specifically weights the contribution of individual source token
representations in the generation or translation of a target word. A hybrid method which
makes use of the attention model to select relevant source tokens and CCA to compute low-
dimensional representations of source context and phrase pairs is feasible, and we leave its
exploration as future work.

The multi-view assumption was first introduced in Kakade and Foster (2007), and further
elaborated in Foster et al. (2008); in that work, the authors show that a straightforward least-
squares regression formulation can have improved sample complexity properties, by recovering
a latent, low-dimensional feature space using CCA. Dhillon et al. (2011, 2012) apply the
assumption to come up with word representations that they call “eigenwords”; it is their 2-step
CCA version that generalize and make use of here in the MT setting.

4.4 Summary

In this chapter, we proposed using CCA to yield a low-dimensional basis for context, after
which we suggested the use of several models that reason about translation options in this
space. While we established the empirical efficacy of these models in terms of MRR, and found
that low-dimensional disambiguation models perform far better than their high-dimensional
counterparts in terms of BLEU, the overall improvement over reasonable baselines was small,
indicating that much of the information our models are capturing are already present through
other features in an MT system. The contributions of this section are: several proposed ap-
proaches to translation sense disambiguation that work directly with low-dimensional context
representations; and empirical evidence that shows incorporating local context in conjunction
with minimal grammars results in MRR and BLEU improvements.

10 In a complete neural MT setup, word alignments from lexical models (§2.1.1) are not used.
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Chapter 5

Low-Dimensional Context &

Semi-Supervised Learning

“Manifolds are a bit like pornography: hard to define, but you know one when
you see one.”

— Shmuel Weinberger

Importantly, the source language context information we seek is not restricted to parallel
sentence corpora, and representations can be learned from the much more copious amounts
of monolingual data available. In this section, we investigate the central hypothesis of this
thesis in the semi-supervised learning (SSL) setting. Although statistical approaches to MT
use sentence-aligned, parallel corpora to learn translation rules along with their probabilities, a
semi-supervised approach allows us to test our hypothesis in the limit.1 By extracting context
over large monolingual corpora, we have access to rich, variable contexts that exist in an
extremely high-dimensional space of size proportional to vocabulary size. Since we hypothesize
that the salient context information on which our models should condition resides in a low-
dimensional space, utilizing this perspective should do better than the high-dimensional view,
keeping in mind the obvious computational benefits it also introduces.2

The challenge of learning translations from monolingual data is of long standing interest,
and has been approached in several ways (Rapp, 1995, Callison-Burch et al., 2006, Haghighi
et al., 2008, Ravi and Knight, 2011). Our work introduces a new take on the problem using
graph-based semi-supervised learning to acquire translation rules and probabilities by leverag-
ing both monolingual and parallel data resources. On the source side, labeled phrases (those

1 Even in resource-rich languages, learning reliable translations of multiword phrases is a challenge, and an
adequate phrasal inventory is crucial for effective translation.

2 This chapter is based on material published originally in Saluja et al. (2014b).
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with known translations) are extracted from bilingual corpora, and unlabeled phrases are ex-
tracted from monolingual corpora; together they are embedded as nodes in a graph, with the
monolingual data determining edge strengths between nodes (§5.1.2). Unlike previous work
(Irvine and Callison-Burch, 2013a, Razmara et al., 2013), we use higher order n-grams instead
of restricting to unigrams, since our approach goes beyond OOV mitigation and can enrich
the entire translation model by using evidence from monolingual text. This enhancement
alone results in an improvement of almost 1.4 BLEU points. On the target side, phrases ini-
tially consisting of translations from the parallel data are selectively expanded with generated
candidates (§5.1.1), and are embedded in a target graph.

We then limit the set of translation options for each unlabeled source phrase (§5.1.3), and
using a structured graph propagation algorithm, where translation information is propagated
from labeled to unlabeled phrases proportional to both source and target phrase similarities, we
estimate probability distributions over translations for the unlabeled source phrases (§5.1.4).
The additional phrases are incorporated in the SMT system through a secondary phrase table
(§5.1.5). We evaluated the proposed approach on both Arabic-English and Urdu-English under
a range of scenarios (§5.2), varying the amount and type of monolingual corpora used, and
obtained improvements between 1 and 4 BLEU points, even when using very large language
models.

It should be noted that there are two forms of dimensionality reduction that we will discuss
in this chapter. The first is the graph embedding itself: graphs are a useful way to encode
neighborhood information for high-dimensional data, and our graph propagation algorithms
take into account only this information (through the edge strength between nodes) during
inference. Using contextual similarity to construct graphs (based on high-dimensional con-
text) is an empirically effective approach and widely adopted in NLP (Subramanya et al.,
2010, Das and Petrov, 2011, inter alia), but also from our perspective using low-dimensional
representations of this context prior to graph construction reduces the intrinsic dimensionality
of the problem. Essentially, the graphs are discrete approximations of continuous manifolds,
which form non-linear subspaces of the original high-dimensional, ambient space which the
data originally resides in. Therefore, recovering low-dimensional representations of phrases
prior to embedding them in the graph means that the training data is a more dense sampling
of the manifold structure, resulting in sample complexity benefits too, and this viewpoint is
the second kind of dimensionality reduction that we discuss. In light of these observations, it
is surprising that little previous work evaluating the various low-dimensional representations
and how they improve graph quality and performance in various tasks exists, and none in MT.
This chapter of the thesis aims to address these gaps.
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Source! Target!

el gato!

los gatos!

un gato!
cat!

the cat!
the cats!

a cat!

Target! Prob.!

the cat! 0.7!

cat! 0.15!

…! …!

felino!

canino!
el perro!

Target! Prob.!

canine! 0.6!

dog! 0.3!

…! …!

Target! Prob.!

the cats! 0.8!

cats! 0.1!

…! …!

Target! Prob.!

the dog! 0.9!

dog! 0.05!

…! …!

canine!

dog!

the dog!

catlike!

Figure 5.1: Example source and target graphs used in our approach. Labeled phrases on the source
side are black (with their corresponding translations on the target side also black); unlabeled and
generated (§5.1.1) phrases on the source and target sides respectively are white. Labeled phrases also
have conditional probability distributions defined over target phrases, which are extracted from the
parallel corpora.

5.1 Generation & Propagation

We first provide an overview of our graph-based framework for translation model expansion.
While previous chapters (and most other work on this topic) have emphasized how a low-
dimensional perspective can assist in parameter estimation and smoothing, in this section we
present a technique that uses graph embeddings of phrases (via context) to increase the support
of the translation model. Our goal is to obtain translation distributions for source phrases
that are not present in the phrase table extracted from the parallel corpus. Both parallel and
monolingual corpora are used to obtain these probability distributions over target phrases. We
assume that sufficient parallel resources exist to learn a basic translation model using standard
techniques, and also assume the availability of larger monolingual corpora in both the source
and target languages. Although our technique applies to phrases of any length, in this work we
concentrate on unigram and bigram phrases, which provides substantial computational cost
savings.

Monolingual data is used to construct separate similarity graphs over phrases (word sequences),
as illustrated in Fig. 5.1. The source similarity graph consists of phrase nodes representing
sequences of words in the source language. If a source phrase is found in the baseline phrase
table it is called a labeled phrase: its conditional empirical probability distribution over
target phrases (estimated from the parallel data) is used as the label, and is subsequently
never changed. Otherwise it is called an unlabeled phrase, and our algorithm finds labels
(translations) for these unlabeled phrases, with the help of the graph-based representation.
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The label space is thus the phrasal translation inventory, and like the source side it can also
be represented in terms of a graph, initially consisting of target phrase nodes from the parallel
corpus.

For the unlabeled phrases, the set of possible target translations could be extremely large (e.g.,
all target language n-grams). Therefore, we first generate and fix a list of possible target
translations for each unlabeled source phrase. We then propagate by deriving a probability
distribution over these target phrases using graph propagation techniques. Next, we will
describe the generation, graph construction and propagation steps.

5.1.1 Generation

The objective of the generation step is to populate the target graph with additional target
phrases for all unlabeled source phrases, yielding the full set of possible translations for the
phrase. Prior to generation, one phrase node for each target phrase occurring in the baseline
phrase table is added to the target graph (black nodes in Fig. 5.1’s target graph). We only
consider target phrases whose source phrase is a bigram, but it is worth noting that the target
phrases are of variable length.

The generation component is based on the observation that for structured label spaces, such as
translation candidates for source phrases in SMT, even similar phrases have slightly different
labels (target translations). The exponential dependence of the sizes of these spaces on the
length of instances is to blame. Thus, the target phrase inventory from the parallel corpus
may be inadequate for unlabeled instances. We therefore need to enrich the target or label
space for unknown phrases. A naïve way to achieve this goal would be to extract all n-grams,
from n = 1 to a maximum n-gram order, from the monolingual data, but this strategy would
lead to a combinatorial explosion in the number of target phrases.

Instead, by intelligently expanding the target space using linguistic information such as mor-
phology (Toutanova et al., 2008, Chahuneau et al., 2013), or relying on the baseline system to
generate candidates similar to self-training (McClosky et al., 2006), we can tractably propose
novel translation candidates (white nodes in Fig. 5.1’s target graph) whose probabilities are
then estimated during propagation. We refer to these additional candidates as “generated”
candidates.

To generate new translation candidates using the baseline system, we decode each unlabeled
source bigram to generate its m-best translations. This set of candidate phrases is filtered to
include only n-grams occurring in the target monolingual corpus, and helps to prune passed-
through OOV words and invalid translations. To generate new translation candidates using
morphological information, we morphologically segment words into prefixes, stem, and suffixes
using linguistic resources. We assume that a morphological analyzer which provides context-
independent analysis of word types exists, and implements the functions stem(f) and stem(e)
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for source and target word types. Based on these functions, source and target sequences of
words can be mapped to sequences of stems. The morphological generation step adds to the
target graph all target word sequences from the monolingual data that map to the same stem
sequence as one of the target phrases occurring in the baseline phrase table. In other words,
this step adds phrases that are morphological variants of existing phrases, differing only in
their affixes.

5.1.2 Graph Construction

At this stage, there exists a list of source bigram phrases, both labeled and unlabeled, as well as
a list of target language phrases of variable length, originating from both the phrase table and
the generation step. To determine pairwise phrase similarities in order to embed these nodes in
their graphs, we utilize the monolingual corpora on both the source and target sides to extract
high-dimensional distributional features based on the context surrounding each phrase. For a
phrase, we look at the p words before and the p words after the phrase, explicitly distinguishing
between the two sides, but not distance (i.e., bag of words on each side). Co-occurrence counts
for each feature (context word) are accumulated over the monolingual corpus, and these counts
are converted to pointwise mutual information (PMI) values, as is standard practice when
computing distributional similarities. Thus, each phrase is represented in a high-dimensional
manner by a vector of PMI values, where each dimension is indexed by a context word and the
side it occurs, and the dimensionality of the vector is roughly twice the vocabulary size.

Cosine similarity between two phrases’ PMI vectors is used for similarity, and we take only
the k most similar phrases for each phrase, to create a k-nearest neighbor similarity matrix
for both source and target language phrases. These graphs are distinct, in that propagation
happens within the two graphs but not between them. Representing a phrase in terms of
its k-nearest neighbors and their respective similarities, instead of in the ambient space of
size proportional to the number of types in the vocabulary, is the first kind of dimensionality
reduction.

While accumulating co-occurrence counts for each phrase, we also maintain an inverted index
data structure, which is a mapping from features (context words) to phrases that co-occur
with that feature within a window of p.3 The inverted index structure reduces the graph
construction cost from ✓(n2

), by only computing similarities for a subset of all possible pairs
of phrases, namely other phrases that have at least one feature in common.

Using this graph-based framework, Zhao et al. (2015) studied the use of continuous represen-
tations for words to achieve the same objective i.e., generate translation rules for unknown
or infrequent phrases. In particular, the authors used the continuous bag-of-words (CBOW)

3 The q most frequent words in the monolingual corpus were removed as keys from this mapping, as these
high entropy features do not provide much information.
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model as implemented in word2vec (Mikolov et al., 2013), where the aim of the model is to
predict a word based on its surrounding context. By maximizing the likelihood of a monolin-
gual corpus with this model, a 300-dimensional representation for each word (the parameters
of the model) are learned. For phrasal representations, Zhao et al. (2015) use simple element-
wise addition as the compositional operator. In §5.2, we present results for graphs constructed
in the ambient (high-dimensional) space, as well as in the 300-dimensional subspace recovered
by the CBOW model.

5.1.3 Candidate Translation List Construction

As mentioned previously, we construct and fix a set of translation candidates, i.e., the label
set for each unlabeled source phrase. The probability distribution over these translations
is estimated through graph propagation, and the probabilities of items outside the list are
assumed to be zero.

We obtain these candidates from two sources:4

1. The union of each unlabeled phrase’s labeled neighbors’ labels, which represents the set
of target phrases that occur as translations of source phrases that are similar to the
unlabeled source phrase. For un gato in Fig. 5.1, this source would yield the cat and cat,
among others, as candidates.

2. The generated candidates for the unlabeled phrase – the ones from the baseline system’s
decoder output, or from a morphological generator (e.g., a cat and catlike in Fig. 5.1).

The morphologically-generated candidates for a given source unlabeled phrase are initially
defined as the target word sequences in the monolingual data that have the same stem sequence
as one of the baseline’s target translations for a source phrase which has the same stem sequence
as the unlabeled source phrase. These candidates are scored using stem-level translation
probabilities, morpheme-level lexical weighting probabilities, and a language model, and only
the top 30 candidates are included.

After obtaining candidates from these two possible sources, the list is sorted by forward lexical
score, using the lexical models of the baseline system. The top r candidates are then chosen
for each phrase’s translation candidate list. In Figure 5.2 we provide example outputs of
our system for a handful of unlabeled source phrases, and explicitly note the source of the
translation candidate (‘G’ for generated, ‘N’ for labeled neighbor’s label).

4 We also obtained the k-nearest neighbors of the translation candidates generated through these methods
by utilizing the target graph, but this had minimal impact.
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5.1.4 Graph Propagation

A graph propagation algorithm transfers label information from labeled nodes to unlabeled
nodes by following the graph’s structure. In some applications, a label may consist of class
membership information, e.g., each node can belong to one of a certain number of classes.
In our problem, the “label” for each node is actually a probability distribution over a set of
translation candidates (target phrases). For a given node f , let e refer to a candidate in the
label set for node f ; then in graph propagation, the probability of candidate e given source
phrase f in iteration t + 1 is:

Pt+1
(e|f) =

X

j2N (f)

T
s

(j|f)Pt

(e|j) (5.1)

where the set N (f) contains the (labeled and unlabeled) neighbors of node f , and T
s

(j|f)

is a term that captures how similar nodes f and j are. This quantity is also known as the
propagation probability, and its exact form will depend on the type of graph propagation
algorithm used. For our purposes, node f is a source phrasal node, the set N (f) refers to
other source phrases that are neighbors of f (restricted to the k-nearest neighbors as in §5.1.2),
and the aim is to estimate P (e|f), the probability of target phrase e being a phrasal translation
of source phrase f .

A classic propagation algorithm that has been suitably modified for use in bilingual lexicon
induction (Tamura et al., 2012, Razmara et al., 2013) is the label propagation (LP) algorithm
of Zhu et al. (2003). In this case, T

s

(f, j) is chosen to be:

T
s

(j|f) =

ws

f,jP
j

02N (f) ws

f,j

0
(5.2)

where ws

f,j

is the cosine similarity (as computed in §5.1.2) between phrase f and phrase j on
side s (the source side).

As evident in Eq. 5.2, LP only takes into account source language similarity of phrases. To
see this observation more clearly, let us reformulate Eq. 5.1 more generally as:

Pt+1(e|f) =
X

j2N (f)

T
s

(j|f)
X

e

02H(j)

T
t

(e0|e)Pt(e0|j) (5.3)

where H(j) is the translation candidate set for source phrase j, and T
t

(e0|e) is the propagation
probability between nodes or phrases e and e0 on the target side. We have simply replaced
Pt

(e|j) with
P

e

02H(j) T
t

(e0|e)Pt

(e0|j), defining it in terms of j’s translation candidate list.

Note that in the original LP formulation the target side information is disregarded, i.e.,
T
t

(e0|e) = 1 if and only if e = e0 and 0 otherwise. As a result, LP is suboptimal for our
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needs, since it is unable to appropriately handle generated translation candidates for the un-
labeled phrases. These translation candidates are usually not present as translations for the
labeled phrases (or for the labeled phrases that neighbor the unlabeled one in question). When
propagating information from the labeled phrases, such candidates will obtain no probability
mass since e 6= e0. Thus, due to the setup of the problem, LP naturally biases away from
translation candidates produced during the generation step (§5.1.1).

Structured Label Propagation

The label set we are considering has a similarity structure encoded by the target graph. How
can we exploit this structure in graph propagation on the source graph? In Liu et al. (2012),
the authors generalize label propagation to structured label propagation (SLP) in an effort
to work more elegantly with structured labels. In particular, the definition of target similarity
is similar to that of source similarity:

T
t

(e0|e) =

wt

e,e

0P
e

002H(j) wt

e,e

00
(5.4)

Therefore, the final update equation in SLP is:

Pt+1(e|f) =
X

j2N (f)

T
s

(j|f)
X

e

02H(j)

T
t

(e0|e)Pt(e0|j) (5.5)

With this formulation, even if e 6= e0, the similarity T
t

(e0|e) as determined by the target phrase
graph will dictate propagation probability. We re-normalize the probability distributions after
each propagation step to sum to one over the fixed list of translation candidates, and run the
SLP algorithm to convergence.5

5.1.5 Phrase-based SMT Expansion

After graph propagation, each unlabeled phrase is labeled with a categorical distribution
over the set of translation candidates defined in §5.1.3. In order to utilize these newly ac-
quired phrase pairs, we need to compute their relevant features. The phrase pairs have four
log-probability features with two likelihood features and two lexical weighting features. In
addition, we use a sophisticated lexicalized hierarchical reordering model (HRM) (Galley and
Manning, 2008) with five features for each phrase pair.

We utilize the graph propagation-estimated forward phrasal probabilities P(e|f) as the forward
likelihood probabilities for the acquired phrases; to obtain the backward phrasal probability

5 Empirically within a few iterations and a wall-clock time of less than 10 minutes in total.
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for a given phrase pair, we make use of Bayes’ Theorem:

P(f |e) =

P(e|f)P(f)

P(e)

where the marginal probabilities of source and target phrases e and f are obtained from the
counts extracted from the monolingual data. The baseline system’s lexical models are used
for the forward and backward lexical scores. The HRM probabilities for the new phrase pairs
are estimated from the baseline system by backing-off to the average values for phrases with
similar length.

5.2 Evaluation

We performed an extensive evaluation to examine various aspects of the approach along with
overall system performance. Two language pairs were used: Arabic-English and Urdu-English.
The Arabic-English evaluation was used to validate the decisions made during the development
of our method and also to highlight properties of the technique. With it, in §5.2.2 we first
analyzed the impact of utilizing phrases instead of words and SLP instead of LP; the latter
experiment underscores the importance of generated candidates. We also look at how adding
morphological knowledge to the generation process can further enrich performance. In §5.2.3,
we then examined the effect of using a very large 5-gram language model training on 7.5
billion English tokens to understand the nature of the improvements in §5.2.2. The Urdu to
English evaluation in §5.2.4 focuses on how noisy parallel data and completely monolingual
(i.e., not even comparable) text can be used for a realistic low-resource language pair, and
is evaluated with the larger language model only. We also examine how our approach can
learn from noisy parallel data compared to the traditional SMT system. Laslty, in §5.2.5,
we compare graphs constructed with high-dimensional phrase representations compared to
low-dimensional representations learned with the CBOW model.

Baseline phrasal systems are used both for comparison and for generating translation candi-
dates for unlabeled phrases as described in §5.1.1. The baseline is a state-of-the-art phrase-
based system; we perform word alignment using a lexicalized hidden Markov model, and then
the phrase table is extracted using the grow-diag-final heuristic (Koehn et al., 2003). The
13 baseline features (2 lexical, 2 phrasal, 5 HRM, and 1 language model, word penalty, phrase
length feature and distortion penalty feature) were tuned using MERT (Och, 2003), which
is also used to tune the 4 feature weights introduced by the secondary phrase table (2 lexi-
cal and 2 phrasal, other features being shared between the two tables). For all systems, we
use a distortion limit of 4. We use case-insensitive BLEU (Papineni et al., 2002) to evaluate
translation quality.
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5.2.1 Datasets

Bilingual corpus statistics for both language pairs are presented in Table 5.1. For Arabic-
English, our training corpus consisted of 685k sentence pairs from standard LDC corpora6.
The NIST MT06 and MT08 Arabic-English evaluation sets (combining the newswire and
weblog domains for both sets), with four references each, were used as tuning and testing sets
respectively. For Urdu-English, the training corpus was provided by the LDC for the NIST
Urdu-English MT evaluation, and most of the data was automatically acquired from the web,
making it quite noisy. After filtering, there are approximately 65k parallel sentences; these
were supplemented by an additional 100k dictionary entries. Tuning and test data consisted
of the MT08 and MT09 evaluation corpora, once again a mixture of news and web text.

Corpus Sentences Words (Src)
Ar-En Train 685,502 17,055,168
Ar-En Tune (MT06) 1,664 33,739
Ar-En Test (MT08) 1,360 42,472
Ur-En Train 165,159 1,169,367
Ur-En Tune (MT08) 1,864 39,925
Ur-En Test (MT09) 1,792 39,922

Table 5.1: Bilingual corpus statistics for the Arabic-English and Urdu-English datasets used.

Table 5.2 contains statistics for the monolingual corpora used in our experiments. From
these corpora, we extracted all sentences that contained at least one source or target phrase
match to compute features for graph construction. For the Arabic to English experiments,
the monolingual corpora are taken from the AFP Arabic and English Gigaword corpora and
are of a similar date range to each other (1994-2010), rendering them comparable but not
sentence-aligned or parallel.

For the Urdu-English experiments, completely non-comparable monolingual text was used for
graph construction; we obtained the Urdu side through a web-crawler, and a subset of the
AFP Gigaword English corpus was used for English. In addition, we obtained a corpus from
the ELRA7, which contains a mix of parallel and monolingual data; based on timestamps,
we extracted a comparable English corpus for the ELRA Urdu monolingual data to form a
roughly 470k-sentence “noisy parallel" set. We used this set in two ways: either to augment
the parallel data presented in Table 5.1, or to augment the non-comparable monolingual data
in Table 5.2 for graph construction.

For the parameters introduced throughout the text, we present in Table 5.3 a reminder of their
interpretation as well as the values used in this work.

6 LDC2007T08 and LDC2008T09
7 ELRA-W0038
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Corpus Sentences Words
Ar Comparable 10.2m 290m
En I Comparable 29.8m 900m
Ur Noisy Parallel 470k 5m
En II Noisy Parallel 470k 4.7m
Ur Non-Comparable 7m 119m
En II Non-Comparable 17m 510m

Table 5.2: Monolingual corpus statistics for the Arabic-English and Urdu-English evaluations. The
monolingual corpora can be sub-divided into comparable, noisy parallel, and non-comparable compo-
nents. En I refers to the English side of the Arabic-English corpora, and En II to the English side of
the Urdu-English corpora.

Parameter Description Value

m m-best candidate list size when bootstrapping candidates in generation stage. 100
p Window size on each side when extracting features for phrases. 2
q Filter the q most frequent words when storing the inverted index data structure

for graph construction. Both source and target sides share the same value.
25

k Number of neighbors stored for each phrase for both source and target graphs.
This parameter controls the sparsity of the graph.

500

r Maximum size of translation candidate list for unlabeled phrases. 20

Table 5.3: Parameters, explanation of their function, and value chosen.

5.2.2 Experimental Variations

In our first set of experiments, we looked at the impact of choosing bigrams over unigrams as
our basic unit of representation, along with performance of LP (Eq. 5.2) compared to SLP
(Eq. 5.4). Recall that LP only takes into account source similarity; since the vast majority
of generated candidates do not occur as labeled neighbors’ labels, restricting propagation to
the source graph drastically reduces the usage of generated candidates as labels, but does not
completely eliminate it. In these experiments, we utilize a reasonably-sized 4-gram language
model trained on 900m English tokens, i.e., the English monolingual corpus.

Table 5.4 presents the results of these variations; overall, by taking into account generated
candidates appropriately and using bigrams (“SLP 2-gram”), we obtained a 1.13 BLEU gain on
the test set. Using unigrams (“SLP 1-gram”) actually does worse than the baseline, indicating
the importance of focusing on translations for sparser bigrams. While LP (“LP 2-gram”) does
reasonably well, its underperformance compared to SLP underlines the importance of enriching
the translation space with generated candidates and handling these candidates appropriately.8

8 It is relatively straightforward to combine both unigrams and bigrams in one source graph, but for exper-
imental clarity we did not mix these phrase lengths.
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BLEU
Setup Tune Test
Baseline 39.33 38.09
SLP 1-gram 39.47 37.85
LP 2-gram 40.75 38.68
SLP 2-gram 41.00 39.22
SLP-HalfMono 2-gram 40.82 38.65
SLP+Morph 2-gram 41.02 39.35

Table 5.4: Results for the Arabic-English evaluation. The LP vs. SLP comparison highlights the
importance of target side enrichment via translation candidate generation, 1-gram vs. 2-gram com-
parisons highlight the importance of emphasizing phrases, utilizing half the monolingual data shows
sensitivity to monolingual corpus size, and adding morphological information results in additional
improvement.

In “SLP-HalfMono", we use only half of the monolingual comparable corpora, and still obtain
an improvement of 0.56 BLEU points, indicating that adding more monolingual data is likely
to improve the system further. Interestingly, biasing away from generated candidates using all
the monolingual data (“LP 2-gram") performs similarly to using half the monolingual corpora
and handling generated candidates properly (“SLP-HalfMono”).

Additional morphologically generated candidates were added in this experiment as detailed
in §5.1.3. We used a simple hand-built Arabic morphological analyzer that segments word
types based on regular expressions, and an English lexicon-based morphological analyzer. The
morphological candidates add a small amount of improvement, primarily by targeting genuine
OOVs.

5.2.3 Large Language Model Effect

In this set of experiments, we examined if the improvements in §5.2.2 can be explained pri-
marily through the extraction of language model characteristics during the semi-supervised
learning phase, or through orthogonal pieces of evidence. Would the improvement be less
substantial had we used a very large language model?

To answer this question we trained a 5-gram language model on 570M sentences (7.6B tokens),
with data from various sources including the Gigaword corpus9, WMT and European Parlia-
mentary Proceedings10, and web-crawled data from Wikipedia and the web. Only m-best
generated candidates from the baseline were considered during generation, along with labeled
neighbors’ labels.

9 LDC2011T07
10

http://www.statmt.org/wmt13/
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BLEU
Setup Tune Test
Baseline+LargeLM 41.48 39.86
SLP+LargeLM 42.82 41.29

Table 5.5: Results with the large language model scenario. The gains are even better than with the
smaller language model.

Table 5.5 presents the results of using this language model. We obtained a robust, 1.43-
BLEU point gain, indicating that the addition of the newly induced phrases provided genuine
translation improvements that cannot be compensated by the language model effect. Further
examination of the differences between the two systems yielded that most of the improvements
are due to better bigrams and trigrams, as indicated by the breakdown of the BLEU score
precision per n-gram, and primarily leverages higher quality generated candidates from the
baseline system. We analyze the output of these systems further in the output analysis section
below (§5.2.6).

5.2.4 Urdu-English

In order to evaluate the robustness of these results beyond one language pair, we looked
at Urdu-English, a low resource pair likely to benefit from this approach. In this set of
experiments, we used the large language model in §5.2.3, and only used baseline-generated
candidates. In the Arabic-English setup we have access to comparable corpora through time-
stamped data such as AFP from the GigaWord corpus on both sides, but we do not have
access to such data for Urdu-English. We experimented with two extreme setups that differed
in the data assumed parallel, from which we built our baseline system, and the data treated
as monolingual, from which we built our source and target graphs.

BLEU
Setup Tune Test
Baseline 21.87 21.17
SLP+Noisy 26.42 25.38
Baseline+Noisy 27.59 27.24
SLP 28.53 28.43

Table 5.6: Results for the Urdu-English evaluation evaluated with BLEU. All experiments were
conducted with the larger language model, and generation only considered the m-best candidates from
the baseline system.

In the first setup, we use the noisy parallel data for graph construction and augment the
non-comparable corpora with it:
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• parallel: “Ur-En Train”
• Urdu monolingual: “Ur Noisy Parallel”+“Ur Non-Comparable”
• English monolingual: “En II Noisy Parallel”+“En II Non-Comparable”

The results from this setup are presented as “Baseline” and “SLP+Noisy” in Table 5.6. In
the second setup, we train a baseline system using the data in Table 5.1, augmented with the
noisy parallel text:

• parallel: “Ur-En Train”+“Ur Noisy Parallel”+“En II Noisy Parallel”
• Urdu monolingual: “Ur Non-Comparable”
• English monolingual: “En II Non-Comparable”

The results from this setup are presented as “Baseline+Noisy” and “SLP” in Table 5.6. The
two setups allow us to examine how effectively our method can learn from the noisy parallel
data by treating it as monolingual (i.e., for graph construction), compared to treating this
data as parallel, and also examines the realistic scenario of using completely non-comparable
monolingual text for graph construction as in the second setup.

In the first setup, we get a huge improvement of 4.2 BLEU points (“SLP+Noisy”) when using
the monolingual data and the noisy parallel data for graph construction. Our method obtained
much of the gains achieved by the supervised baseline approach that utilizes the noisy parallel
data in conjunction with the NIST-provided parallel data (“Baseline+Noisy”), but with fewer
assumptions on the nature of the corpora (monolingual vs. parallel). Furthermore, despite
completely un-aligned, non-comparable monolingual text on the Urdu and English sides, and
a very large language model, we can still achieve gains in excess of 1.2 BLEU points (“SLP”)
in a difficult evaluation scenario, which shows that the technique adds a genuine translation
improvement over and above naïve memorization of n-gram sequences.

5.2.5 Low-Dimensional Graphs

In Zhao et al. (2015), the authors ran experiments on the same corpora, and compared SLP
with the high-dimensional, PMI-based representations and SLP with continuous representa-
tions. Table 5.7 presents results for both language pairs. Numerically, the Arabic-English
results are very close to Table 5.4, and we find that the continous representations improve
upon the high-dimensional representations significantly, by 0.2-0.3 BLEU on the tune and test
sets. For the Urdu-English results, the baseline setup and SLP results are ⇡ 1.25 BLEU points
lower on the tune set than in Table 5.6, but the overall trend is the same. In this instance,
continuous representations have a negligible improvement over the high-dimensional ones, so
this phenomenon does seem to vary in magnitude by corpus or language pair.
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BLEU
Setup Tune Test

AR-EN
Baseline 39.33 38.09
SLP w/ PMI 40.93 39.16
SLP w/ continuous 41.31 39.34

UR-EN
Baseline 26.32 27.41
SLP w/ PMI 27.26 27.89
SLP w/ continuous 27.34 27.73

Table 5.7: A comparison between using PMI-based graphs (high-dimensional) and continuous
representation-based graphs (low-dimensional) across two language pairs, from Zhao et al. (2015).

!

Ex Source Reference Baseline System 
1 (Ar) !لتع#$#"! %$سا" ! sending reinforcements strong reinforcements sending reinforcements (N) 
2 (Ar)  !لان$ثا'!+!! with extinction OOV with extinction (N) 
3 (Ar) !محا#لة تحب ! thwarts address  thwarted (N) 
4 (Ar) !لي نسب# ! was quoted as saying attributed to was quoted as saying (G) 
5 (Ar) لمحم"! عب! $#ضح& ! abdalmahmood said he said abdul mahmood  mahmood said (G) 
6 (Ar)  ت#"! منكبا it deems OOV it deems (G) 
7 (Ur) !م"! پ$ ! I am hopeful this hope I am hopeful (N) 
8 (Ur) فا! $پنا$ ! to defend him to defend to defend himself (G) 
9 (Ur) !۔کی گفتگ ! while speaking In the  in conversation (N) 

Figure 5.2: Nine example outputs of our system vs. the baseline highlighting the properties of
our approach. Each example is labeled (Ar) for Arabic source or (Ur) for Urdu source, and system
candidates are labeled with (N) if the candidate unlabeled phrase’s labeled neighbor’s label, or (G) if
the candidate was generated.

5.2.6 Analysis of Output

Figure 5.2 looks at some of the sample hypotheses produced by our system and the base-
line, along with reference translations. The outputs produced by our system are additionally
annotated with the origin of the candidate, i.e., labeled neighbor’s label (N) or generated
(G).

The Arabic-English examples are numbered 1 to 5. The first example shows a source bigram
unknown to the baseline system, resulting in a suboptimal translation, while our system pro-
poses the correct translation of “sending reinforcements". The second example shows a word
that was an OOV for the baseline system, while our system got a perfect translation. The
third and fourth examples represent bigram phrases with much better translations compared
to backing off to the lexical translations as in the baseline. The fifth Arabic-English example
demonstrates the pitfalls of over-reliance on the distributional hypothesis: the source bigram
corresponding to the name “abd almahmood" is distributional similar to another named entity
“mahmood" and the English equivalent is offered as a translation. The distributional hypoth-

91



esis can sometimes be misleading. The sixth example shows how morphological information
can propose novel candidates: an OOV word is broken down to its stem via the analyzer and
candidates are generated based on the stem.

The Urdu-English examples are numbered 7 to 9. In example 7, the bigram “par umeed"
(corresponding to “hopeful") is never seen in the baseline system, which has only seen “umeed"
(“hope”). By leveraging the monolingual corpus to understand the context of this unlabeled
bigram, we can utilize the graph structure to propose a syntactically correct form, also resulting
in a more fluent and correct sentence as determined by the language model. Examples 8 & 9
show cases where the baseline deletes words or translates them into more common words e.g.,
“conversation" to “the", while our system proposes reasonable candidates.

5.3 Related Work

The idea presented in this paper is similar in spirit to bilingual lexicon induction (BLI), where
a seed lexicon in two different languages is expanded with the help of monolingual corpora,
primarily by extracting distributional similarities from the data using word context. This line
of work, initiated by Rapp (1995) and continued by others (Fung and Yee, 1998, Koehn and
Knight, 2002) (inter alia) is limited from a downstream perspective, as translations for only
a small number of words are induced and oftentimes for common or frequently occurring ones
only. Recent improvements to BLI (Tamura et al., 2012, Irvine and Callison-Burch, 2013b)
have contained a graph-based flavor by presenting label propagation-based approaches using
a seed lexicon, but evaluation is once again done on top-1 or top-3 accuracy, and the focus is
on unigrams.

Razmara et al. (2013) and Irvine and Callison-Burch (2013a) conduct a more extensive evalu-
ation of their graph-based BLI techniques, where the emphasis and end-to-end BLEU evalua-
tions concentrated on OOVs, i.e., unigrams, and not on enriching the entire translation model.
As with previous BLI work, these approaches only take into account source-side similarity of
words; only moderate gains (and in the latter work, on a subset of language pairs evaluated)
are obtained. Additionally, because of our structured propagation algorithm, our approach is
better at handling multiple translation candidates and does not need to restrict itself to the
top translation.

Klementiev et al. (2012) propose a method that utilizes a pre-existing phrase table and a small
bilingual lexicon, and performs BLI using monolingual corpora. The operational scope of their
approach is limited in that they assume a scenario where unknown phrase pairs are provided
(thereby sidestepping the issue of translation candidate generation for completely unknown
phrases), and what remains is the estimation of phrasal probabilities. In our case, we obtain
the phrase pairs from the graph structure (and therefore indirectly from the monolingual
data) and a separate generation step, which plays an important role in good performance of
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the method. Similarly, Zhang and Zong (2013) present a series of heuristics that are applicable
in a fairly narrow setting.

The notion of translation consensus, wherein similar sentences on the source side are encour-
aged to have similar target language translations, has also been explored via a graph-based
approach (Alexandrescu and Kirchhoff, 2009). Liu et al. (2012) extend this method by propos-
ing a novel structured label propagation algorithm to deal with the generalization of propa-
gating sets of labels instead of single labels, and also integrated information from the graph
into the decoder. In fact, we utilize this algorithm in our propagation step (§5.1.4). However,
the former work operates only at the level of sentences, and while the latter does extend the
framework to sub-spans of sentences, they do not discover new translation pairs or phrasal
probabilities for new pairs at all, but instead re-estimate phrasal probabilities using the graph
structure and add this score as an additional feature during decoding.

The goal of leveraging non-parallel data in machine translation has been explored from several
different angles. Paraphrases extracted by “pivoting” via a third language (Callison-Burch
et al., 2006) can be derived solely from monolingual corpora using distributional similarity
(Marton et al., 2009). Snover et al. (2008) use cross-lingual information retrieval techniques to
find potential sentence-level translation candidates among comparable corpora. In this case,
the goal is to try and construct a corpus as close to parallel as possible from comparable
corpora, and is a fairly different take on the problem we are looking at. Decipherment-based
approaches (Ravi and Knight, 2011, Dou and Knight, 2012) have generally taken a monolingual
view to the problem and combine phrase tables through the log-linear model during feature
weight training.

Lastly, Blake Shaw’s thesis on non-linear dimensionality reduction and graph embedding
(Shaw, 2011) deals directly with the case where a graph is provided a priori, to which non-
linear dimensionality reduction techniques are applied. He argues that linear dimensionality
reduction techniques like SVD are inappropriate for this task, unless it so happens that the
manifold we are trying to approximate with the graph is a linear one. The approach is slightly
different than the results in Table 5.7, where low-dimensional representations of words and
phrases are obtained prior to graph construction i.e., the size of the ambient space is reduced
prior to estimating the manifold.

5.4 Summary

In this chapter, we presented an approach that can expand a translation model extracted
from a sentence-aligned, bilingual corpus using a large amount of unstructured, monolingual
data in both source and target languages, which leads to improvements of 1.4 and 1.2 BLEU
points over strong baselines on evaluation sets, and in some scenarios gains in excess of 4 BLEU
points. The framework is used to investigate the low-dimensional hypothesis for context in the
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semi-supervised setting, and not only smoothens parameter estimates using low-dimensional
context, but actually expands the support of the model and adds new translation rules. Two
views of low-dimensional context are used: a graph embedding perspective, where phrases are
represented and reasoned about using solely their neighborhood information and form a lower-
dimensional manifold in a higher-dimensional ambient space, and an actual dimensionality
reduction of the ambient space itself prior to manifold estimation.

For future work, we wish to apply a decomposition algorithm (like eigendecomposition or
SVD) to the Laplacian, a graph quantity derived from the similarity matrix, and truncate
the dimensions to a pre-specified hyperparameter (§2.3.3). While such a truncation does
not alter the basic propagation algorithm since we still express each point in terms of its
nearest neighbors, the edge weights between nodes will be altered since the original weights
were estimated in the high-dimensional, ambient space while the truncated Laplacian-based
representations more accurately convey geodesic distances. Second, our graph propagation
algorithms are based on the label propagation variant of Zhu and Ghahramani (2002); in such
approaches, the distribution for each labeled node is kept fixed, and only the unlabeled nodes’
distributions are updated. Other approaches relax this constraint, and allow re-estimation
of the labeled nodes’ distributions as well (Belkin et al., 2006). This relaxation is worth
considering, especially when the original labeled nodes’ distributions are noisy.
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Chapter 6

Conclusion

“Game done changed.”
“Game’s the same, just got more fierce”

— Cutty and Slim Charles, The Wire

Due to the sheer complexity and infinite capacity of language, it is only natural that a key way
to resolve ambiguities is to condition decisions on the context in which such decisions occur.
While this observation has been leveraged in translation, the prevailing approaches have been
somewhat limited in the extent to which context is incorporated. This thesis has argued that
context’s effect on translation is low-dimensional, and an appropriate form of dimensionality
reduction or representation should be utilized when learning translation models.

The contributions of this thesis can be grouped into two broad areas: foundations and appli-
cations. Within foundations, we proposed a bilingual generalization of the L-PCFG model,
L-SCFGs, with corresponding generalizations to the inference algorithm and two parameter
estimation algorithms. The L-SCFG model can be seen as learning low-dimensional represen-
tations of translation rules in terms of the context in which they occur. We also proposed
two sets of methods that directly learn to disambiguate translations by operating in a low-
dimensional context-translation rule space. Lastly, we presented a graph-based SSL method
that first embeds source and target language phrases in two separate graphs, and then operates
only over the graph structure to expand the support of translation models i.e., add new rules
to the inventory along with estimates of their scores.

There are a number of direct applications as a result of this thesis. The first is empirical
validation that marginal rule probabilities from L-SCFG models improve translation, to the
extent that translation models based on minimal grammars can match or even exceed the
performance of those models based on composed grammars. We also thoroughly investigated
the application of various translation disambiguation models, both high and low-dimensional
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and found small improvements in most settings. In the semi-supervised setting, we showed
that the graph-based framework is extremely effective in expanding translation models and
improving overall translation quality. Lastly, all of the code in this thesis has been released in
three separate packages: spectral-scfg, cca-mt, and graphMT.

As with any framework, there are a number of limitations to our approach, some of which
may be inherent to the basic assumptions we have used, and others due to the limitations
in our experimental procedures. Firstly, the multi-view assumption acts as a noise reduction
mechanism since noise in the two views is assumed to be uncorrelated and will be removed by
the resulting projection matrices. However, when using word alignments with parallel corpora
to segment the source sentence into phrases and considering the lexical context surrounding
phrases, the noise is not independent. Furthermore, it can be argued that the manifolds upon
which we build our manifold assumption are not quite low-dimensional manifolds: by using a
one-hot representation for the original ambient space, the manifold is more akin to a relatively
high-dimensional hypercube. Yet, the fact remains that there is an underlying structure to
the distribution of examples (phrases) in this space, and it is this structure that we seek to
exploit by utilizing the manifold assumption. We used minimal grammars as the basis of
our translation inventory in order to explore the incorporation of (low-dimensional) context
through auxiliary models. However, shifting to these grammars introduces another moving
part during the translation process, namely that the search space considered by the translation
decoder is vastly different to a more traditional search space based on compositional models.
This observation may be partly responsible for the large gap in performance between minimal
and composed grammar baselines, and adjusting the beam size during decoding to consider
more translation options is the ideal solution to normalize for such a difference.

6.1 Future Work

Within each chapter of this thesis, we have discussed possible extensions to the relevant subject
matter. At a higher level, we now consider several more extensions of this work that are more
speculative than previously considered ones.

Label smoothing The focus of this thesis has been on low-dimensional representations
of basic linguistic units: whether they be hierarchical translation rules, phrase pairs, or the
context itself. Many of the ideas that we have used for dimensionality reduction can also
be used for function smoothing i.e., applied to the label space and not the data space as
has been done in this thesis. In NLP and especially in translation, the label functions for
linguistic units are extremely high-dimensional (because often the labels are combinatorial
structures) and complex, so it is natural to apply smoothness criteria to these functions that
also respect the structure of the label space. Some of these ideas have been explored before to
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a limited extent e.g., dimensionality reduction methods like Laplacian eigenmaps that learn
smooth functions over the graph (respecting graph structure) by truncating extraneous basis
directions from the spectrum of the graph Laplacian (Belkin and Niyogi, 2003). More formally,
the field of information geometry (Amari and Nagaoka, 2007) provides an extensive toolbox to
tackle problem in the label space. Information geometry applies differential geometry to the
space of probability distributions: distributions for a model family are points of a Riemannian
manifold i.e., a statistical manifold. Since the objective during learning is to select a set of
parameters from this model family that best matches observed data i.e., select a point from the
statistical manifold, it is important to consider the structure of this manifold during learning.
Thus, information geometric approaches consider smoothed, low-dimensional versions of label
spaces. In particular, dimensionality reduction that operates on the probability simplex instead
of the ambient Euclidean space have been proposed (Carter et al., 2008). These algorithms take
into account the stochastic nature of each point on the manifold, and information divergence
(computing using Kullback-Leibler divergence) instead of Euclidean distance is the measure
of dissimilarity.

Other types of context In this thesis, we considered two different types of context: struc-
tured and unstructured. In Ch. 3, we used the minimal derivation trees provided to us during
training to provide a structured, hierarchical form of context in the form of inside and out-
side trees. In Chs. 4 and 5, we used unstructured context in the form of windows around
phrases that we were interested in representing. We can consider other forms of context that
operate at a global level and leverage information at the granularity of paragraphs or even
documents, which is particularly relevant in MT since translation systems often translate on
a per-document basis. For example, topic information for a document can be extracted using
unsupervised Bayesian approaches like latent Dirichlet allocation (Blei et al., 2003). Recently,
paragraph-level representations have also been explored (Le and Mikolov, 2014), and thus a
natural extension of this thesis would be to incorporate context at this granularity into trans-
lation models. Certain signals may be easily extractable from paragraph and document-level
information, but may not be present when making local translation disambiguation decisions,
and this information should always be conditioned on when translating.

More than two views Many of the approaches presented in this thesis make use of the
multi-view assumption, but arguably this assumption is used to a rather limited extent. In all
cases, we actually make use of a “two-view” assumption, and therefore a logical extension to
the thesis is to truly evaluate the multi-view assumption. In both the L-SCFG models from
Ch. 3 and the disambiguation models in Ch. 4, the true multi-view assumption necessitates
the usage of higher-order tensor structures Of course, instead of CCA we need to make use of
a generalized notion of this technique that operates on tensors and not matrices (Horst, 1961,
Jain and Oh, 2014, Luo et al., 2015, inter alia); such techniques can be computationally intense,
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but algorithms for approximate computation e.g., Rastogi et al. (2015) have been proposed
to allay this difficulty. Through a generalized version of CCA, complementary signals that
shed light on the correct form and function of phrases in context can be used e.g., lexical,
part-of-speech, and semantic role labels can be combined. Topic information and other signals
that operate at a higher level can also be incorporated.

Combining the assumptions As mentioned in §2.3.4, inference over a graph can be seen
as a random walk traversal on the graph. Using the dynamics of these random walks over
the entire graph structure, we can come up with a notion of distance on the graph, similar to
geodesic distance in that it respects graph structure, but is more related to the random walk
dynamics on the graph: the diffusion distance (Coifman and Lafon, 2006). Recently, Linden-
baum et al. (2015) has proposed a way of computing diffusion distances between examples
while directly taking into account that each datapoint can have multiple views attributed to
it. In particular, they constrain the diffusion process such that a random walk on a node rep-
resenting one particular view can only transition to a node representing the other view. This
desideratum can be easily achieved by imposing a particular block structure on the random
walk matrix. Subsequently, previously proposed techniques can be used to extract diffusion
distances from this matrix. Lindenbaum et al. (2015) thus present an interesting perspective
on combining the two major assumptions used in this thesis, and exploring these techniques
in conjunction with some of the ideas presented here would be an interesting avenue for future
exploration.

98



Bibliography

Andrei Alexandrescu and Katrin Kirchhoff. Graph-based learning for statistical machine trans-
lation. In Proceedings of NAACL, 2009.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of Information Geometry. American Mathe-
matical Society, 2007.

Rie Kubota Ando and Tong Zhang. Two-view feature generation model for semi-supervised
learning. In Proceedings of ICML, 2007.

Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical correlation
analysis. In Proceedings of ICML, 2013.

Haim Avron, Christos Boutsidis, Sivan Toledo, and Anastasios Zouzias. Efficient dimension-
ality reduction for canonical correlation analysis. In Proceedings of ICML, 2013.

Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer. A maximum likelihood approach
to continuous speech recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 5(2):179–190, 1983.

Mikahil Belkin. Problems of Learning on Manifolds. PhD thesis, University of Chicago, 2003.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation, 15(6):1373–1396, 2003.

Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based man-
ifold methods. Journal of Computer and System Sciences, 74(8):1289–1308, 2008.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of Machine Learning
Research, 7:2399–2434, 2006.

Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. Label propagation and quadratic
criterion. In Semi-Supervised Learning, pages 193–216. MIT Press, 2006.

99



Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. Painless
unsupervised learning with features. In Proceedings of NAACL, 2010.

Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71, 1996.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.

Ake Björck and Gene H. Golub. Numerical methods for computing angles between linear
subspaces. AMS Mathematics of Computation, 27:579–594, 1973.

David Blei, Andrew Ng, and Michael Jordan. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of COLT, 1998.

Phil Blunsom and Miles Osborne. Probabilistic inference for machine translation. In Proceed-
ings of EMNLP, 2008.

Phil Blunsom, Trevor Cohn, and Miles Osborne. A discriminative latent variable model for
statistical machine translation. In Proceedings of ACL, 2008a.

Phil Blunsom, Trevor Cohn, and Miles Osborne. Bayesian synchronous grammar induction.
In Proceedings of NIPS, 2008b.

Peter F Brown, John Cocke, Stephen A Della Pietra, Vincent J Della Pietra, Frederick Jelinek,
John. D Lafferty, Robert. L. Mercer, and Paul S. Roossin. A statistical approach to machine
translation. Computational Linguistics, 16(2):256–264, 1990.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer.
The mathematics of statistical machine translation: parameter estimation. Computational
Linguistics, 19(2):263–311, 1993.

Chris Callison-Burch, Philipp Koehn, and Miles Osborne. Improved statistical machine trans-
lation using paraphrases. In Proceedings of NAACL, 2006.

Marine Carpuat. Word Sense Disambiguation for Statistical Machine Translation. PhD thesis,
Hong Kong University of Science and Technology, 2008.

Marine Carpuat and Dekai Wu. Word sense disambiguation vs. statistical machine translation.
In Proceedings of ACL, 2005.

Marine Carpuat and Dekai Wu. Improving statistical machine translation using word sense
disambiguation. In Proceedings of EMNLP-CoNLL, 2007.

Marine Carpuat, Hal Daume III, Katharine Henry, Ann Irvine, Jagadeesh Jagarlamudi, and

100



Rachel Rudinger. Sensespotting: Never let your parallel data tie you to an old domain. In
Proceedings of ACL, 2013.

Kevin M. Carter, Raviv Raich, and Alfed O. Hero III. An information geometric framework
for dimensionality reduction. arXiv:0809.4866, 2008.

Victor Chahuneau, Eva Schlinger, Noah A. Smith, and Chris Dyer. Translating into morpho-
logically rich languages with synthetic phrases. In Proceedings of EMNLP, 2013.

Yee Seng Chan, Hwee Tou Ng, and David Chiang. Word sense disambiguation improves
statistical machine translation. In Proceedings of ACL, 2007.

Jean-Cédric Chappelier and Martin Rajman. A generalized CYK algorithm for parsing
stochastic CFG. In Proceedings of TAPD, 1998.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for
language modeling. Computer Speech & Language, 13(4):359–393, 1999.

David Chiang. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–
228, June 2007.

David Chiang. Hope and fear for discriminative training of statistical translation models.
Journal of Machine Learning Research, 13(1):1159–1187, 2012.

David Chiang, Kevin Knight, and Wei Wang. 11,001 new features for statistical machine
translation. In Proceedings of NAACL, 2009.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Proceedings of EMNLP, 2014.

Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A. Smith. Better hypothesis testing
for statistical machine translation: Controlling for optimizer instability. In Proceedings of
ACL, 2011.

Shay B. Cohen and Michael Collins. Tensor decomposition for fast parsing with latent-variable
PCFGs. In Proceedings of NIPS, 2012.

Shay B. Cohen and Michael Collins. A provably correct learning algorithm for latent-variable
PCFGs. In Proceedings of ACL, 2014.

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P. Foster, and Lyle Ungar. Spectral
learning of latent-variable PCFGs: Algorithms and sample complexity. Journal of Machine
Learning Research, 15:2399–2449, 2014.

101



Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Har-
monic Analysis, 21:5–30, 2006.

Dipanjan Das and Slav Petrov. Unsupervised part-of-speech tagging with bilingual graph-
based projections. In Proceedings of ACL, 2011.

Hal Daumé III and Jagadeesh Jagarlamudi. Domain adaptation for machine translation by
mining unseen words. In Proceedings of ACL, 2011.

Arthuer P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):
1–38, 1977.

John DeNero. Phrase Alignment Models for Statistical Machine Translation. PhD thesis,
University of California, Berkeley, 2010.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John
Makhoul. Fast and robust neural network joint models for statistical machine translation.
In Proceedings of ACL, 2014.

Paramveer S. Dhillon, Dean Foster, and Lyle Ungar. Multi-view learning of word embeddings
via CCA. In Proceedings of NIPS, 2011.

Paramveer S. Dhillon, Jordan Rodu, Dean P. Foster, and Lyle H. Ungar. Two step CCA: a
new spectral method for estimating vector models of words. In Proceedings of ICML, 2012.

Manfredo Perdigão Do Carmo. Riemannian Geometry. Birkhäuser, 1992.

Qing Dou and Kevin Knight. Large scale decipherment for out-of-domain machine translation.
In Proceedings of EMNLP, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Nadir Durrani, Helmut Schmid, and Alexander Fraser. A joint sequence translation model
with integrated reordering. In Proceedings of ACL, 2011.

Chris Dyer. A Formal Model of Ambiguity and its Applications in Machine Translation. PhD
thesis, University of Maryland, College Park, 2010.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan Weese, Ferhan Ture, Phil Blunsom,
Hendra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A decoder, alignment, and
learning framework for finite-state and context-free translation models. In Proceedings of
ACL, 2010.

Yang Feng and Trevor Cohn. A markov model of machine translation using non-parametric
bayesian inference. In Proceedings of ACL, 2013.

102



Dean P. Foster, Sham M. Kakade, and Tong Zhang. Multi-view dimensionality reduction via
canonical correlation analysis. Technical report, Toyota Technological Institute (TTI), 2008.

Pascale Fung and Lo Yuen Yee. An IR approach for translating new words from nonparallel,
comparable texts. In Proceedings of ACL, 1998.

Michel Galley and Christopher D. Manning. A simple and effective hierarchical phrase re-
ordering model. In Proceedings of EMNLP, 2008.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a translation rule?
In Proceedings of NAACL, 2004.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and
Ignacio Thayer. Scalable inference and training of context-rich syntactic translation models.
In Proceedings of ACL, 2006.

Zoubin Ghahramani. One hidden layer linear networks and canonical correlations. http:

//mlg.eng.cam.ac.uk/zoubin/papers/cancorr.pdf, 1996.

Kevin Gimpel and Noah A. Smith. Rich source-side context for statistical machine translation.
In Proceedings of WMT, 2008.

Yoav Goldberg and Omer Levy. word2vec explained: deriving Mikolov et al.’s negative-
sampling word-embedding method. arXiv:1402.3722, 2014.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University
Press, 1996.

Jonathan Graehl, Kevin Knight, and Jonathan May. Training tree transducers. Computational
Linguistics, 34(3):391–427, 2008.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick, and Dan Klein. Learning bilingual
lexicons from monolingual corpora. In Proceedings of ACL, 2008.

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: probabilis-
tic algorithms for constructing approximate matrix decompositions. SIAM, 53(2):217–288,
2011.

Greg Hanneman and Alon Lavie. Improving syntax-augmented machine translation by coars-
ening the label set. In Proceedings of NAACL, 2013.

David R. Hardoon, Sandor R. Szedmak, and John R. Shawe-taylor. Canonical correlation
analysis: An overview with application to learning methods. Neural Computation, 16(12):
2639–2664, 2004.

Zhongjun He, Qun Liu, and Shouxun Lin. Improving statistical machine translation using
lexicalized rule selection. In Proceedings of COLING, 2008.

103

http://mlg.eng.cam.ac.uk/zoubin/papers/cancorr.pdf
http://mlg.eng.cam.ac.uk/zoubin/papers/cancorr.pdf


Kenneth Heafield. Kenlm: Faster and smaller language model queries. In Proceedings of WMT,
2011.

Matthias Hein, Jean yves Audibert, and Ulrike Von Luxburg. From graphs to manifolds -
weak and strong pointwise consistency of graph Laplacians. In Proceedings of COLT, 2005.

Matthias Hein, Jean yves Audibert, and Ulrike Von Luxburg. Graph Laplacians and their
convergence on random neighborhood graphs. Journal of Machine Learning Research, 8:
1325–1370, 2007.

Paul Horst. Generalized canonical correlations and their applications to experimental data.
Journal of Clinical Psychology, 17(4), 1961.

Harold Hotelling. Relations between two sets of variates. Biometrika, 28:312–377, 1936.

Daniel Hsu, Sham M. Kakade, and Tong Zhang. A spectral algorithm for learning hidden
Markov models. In Proceedings of COLT, 2009.

Liang Huang, Kevin Knight, and Aravind Joshi. Statistical syntax-directed translation with
extended domain of locality. In Proceedings of AMTA, August 2006.

Zhongqiang Huang, Martin Čmejrek, and Bowen Zhou. Soft syntactic constraints for hierarchi-
cal phrase-based translation using latent syntactic distributions. In Proceedings of EMNLP,
2010.

Ann Irvine and Chris Callison-Burch. Supervised bilingual lexicon induction with multiple
monolingual signals. In Proceedings of NAACL, 2013a.

Ann Irvine and Chris Callison-Burch. Combining bilingual and comparable corpora for low
resource machine translation. In Proceedings of WMT, 2013b.

Herbert Jaeger. Observable Operator Models for Discrete Stochastic Time Series. Neural
Computation, 12(6):1371–1398, 2000.

Prateek Jain and Sewoong Oh. Provable tensor factorization with missing data. In Proceedings
of NIPS, 2014.

Sham M. Kakade and Dean P. Foster. Multi-view regression via canonical correlation analysis.
In Proceedings of COLT, 2007.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proceedings
of EMNLP, 2013.

Dan Klein and Christopher D. Manning. Parsing and hypergraphs. In Proceedings of IWPT,
2001.

Alexandre Klementiev, Ann Irvine, Chris Callison-Burch, and David Yarowsky. Toward sta-
tistical machine translation without parallel corpora. In Proceedings of EACL, 2012.

104



Philipp Koehn. Statistical Machine Translation. Cambridge University Press, 2010.

Philipp Koehn and Kevin Knight. Learning a translation lexicon from monolingual corpora.
In Proceedings of the ACL Workshop on Unsupervised Lexical Acquisition, 2002.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
Proceedings of NAACL, 2003.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM, 51
(3):455–500, 2009.

Erwin Kreyszig. Introductory Functional Analysis with Applications. Wiley, 1989.

Stéphane Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University,
2004.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In
Proceedings of ICML, 2014.

Abby Levenberg, Chris Dyer, and Phil Blunsom. A Bayesian model for learning SCFGs with
discontiguous rules. In Proceedings of EMNLP-CoNLL, 2012.

P. M. Lewis, II and R. E. Stearns. Syntax-directed transduction. Journal of the ACM, 15(3):
465–488, 1968.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar. An end-to-end discrimi-
native approach to machine translation. In Proceedings of ACL, 2006.

Percy Liang, Slav Petrov, Michael I. Jordan, and Dan Klein. The infinite PCFG using hierar-
chical dirichlet processes. In Proceedings of EMNLP, 2007.

Ofir Lindenbaum, Arie Yeredor, Moshe Salhov, and Amir Averbuch. Multiview diffusion maps.
arXiv:1508.05550, 2015.

Shujie Liu, Chi-Ho Li, Mu Li, and Ming Zhou. Learning translation consensus with structured
label propagation. In Proceedings of ACL, 2012.

Adam Lopez. Statistical machine translation. ACM Computing Surveys, 40(3):1–49, 2008.

David Lopez-Paz, Suvrit Sra, Alex Smola, Zoubin Ghahramani, and Bernhard Schölkopf.
Randomized nonlinear component analysis. In Proceedings of ICML, 2014.

Yichao Lu and Dean P Foster. Large scale canonical correlation analysis with iterative least
squares. In Proceedings of NIPS, 2014.

Yong Luo, Dacheng Tao, Yonggang Wen, Kotagiri Ramamohanarao, and Chao Xu. Tensor
canonical correlation analysis for multi-view dimension reduction. arXiv:1502.02330, 2015.

105



Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. In Proceedings of EMNLP, 2015.

Daniel Marcu and William Wong. A phrase-based, joint probability model for statistical
machine translation. In Proceedings of EMNLP, 2002.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large an-
notated corpus of English: the penn treebank. Computational Linguistics, 19(2):313–330,
1993.

Kanti V. Mardia, John T. Kent, and John M. Bibby. Multivariate Analysis. New York
Academic Press, 1979.

José B. Mariño, Rafael E. Banchs, Josep M. Crego, Adrià de Gispert, Patrik Lambert, José
A. R. Fonollosa, and Marta R. Costa-jussà. N-gram-based machine translation. Computa-
tional Linguistics, 32(4):527–549, 2006.

Yuval Marton, Chris Callison-Burch, and Philip Resnik. Improved statistical machine trans-
lation using monolingually-derived paraphrases. In Proceedings of EMNLP, 2009.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. Probabilistic CFG with latent anno-
tations. In Proceedings of ACL, 2005.

David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training for parsing. In
Proceedings of NAACL, 2006.

I. Dan Melamed. Statistical machine translation by parsing. In Proceedings of ACL, 2004.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv:1301.3781, 2013.

Paul Mineiro and Nikos Karampatziakis. A randomized algorithm for CCA. arXiv:1411.3409,
2014.

Markos Mylonakis and Khalil Sima’an. Learning hierarchical translation structure with lin-
guistic annotations. In Proceedings of ACL, 2011.

Shashi Narayan and Shay B. Cohen. Diversity in Spectral Learning for Natural Language
Parsing. In Proceedings of EMNLP, 2015.

Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic dependencies in
stochastic language modelling. Computer Speech and Language, 8:1–38, 1994.

Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A compar-
ison of logistic regression and naive bayes. In Proceedings of NIPS, 2002.

Partha Niyogi. Manifold regularization and semi-supervised learning: Some theoretical anal-
yses. Journal of Machine Learning Research, 14:1229–1250, 2013.

106



Franz Josef Och. Minimum Error Rate Training in Statistical Machine Translation. In Pro-
ceedings of ACL, 2003.

Franz Josef Och and Hermann Ney. Discriminative training and maximum entropy models for
statistical machine translation. In Proceedings of ACL, 2002.

Franz Josef Och and Hermann Ney. The Alignment Template Approach to Statistical Machine
Translation. Computational Linguistics, 30(4):417–449, 2004.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for auto-
matic evaluation of machine translation. In Proceedings of ACL, 2002.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In Proceedings of ICML, 2013.

Michael Paul. Overview of the IWSLT 2009 evaluation campaign. In Proceedings of IWSLT,
2009.

Karl Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2(6):559–572, 1901.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact,
and interpretable tree annotation. In Proceedings of ACL, 2006.

William H. Press. Canonical correlation clarified by singular value decomposition. http:

//www.nr.com/whp/notes/CanonCorrBySVD.pdf, 2011.

Reinhard Rapp. Identifying word translations in non-parallel texts. In Proceedings of ACL,
1995.

Pushpendre Rastogi, Benjamin Van Durme, and Raman Arora. Multiview lsa: Representation
learning via generalized cca. In Proceedings of NAACL, 2015.

Sujith Ravi and Kevin Knight. Deciphering foreign language. In Proceedings of ACL, 2011.

Majid Razmara, Maryam Siahbani, Gholamreza Haffari, and Anoop Sarkar. Graph prop-
agation for paraphrasing out-of-vocabulary words in statistical machine translation. In
Proceedings of ACL, 2013.

Roman Rosipal and Nicole Krämer. Overview and recent advances in partial least squares.
In Proceedings of the International Conference on Subspace, Latent Structure and Feature
Selection, 2006.

Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323–2326, 2000.

Avneesh Saluja, Chris Dyer, and Shay B. Cohen. Latent-variable synchronous CFGs for hier-
archical translation. In Proceedings of EMNLP, 2014a.

107

http://www.nr.com/whp/notes/CanonCorrBySVD.pdf
http://www.nr.com/whp/notes/CanonCorrBySVD.pdf


Avneesh Saluja, Kristina Toutanova, Chris Quirk, and Hany Hassan. Graph-based semi-
supervised learning of translation models from monolingual data. In Proceedings of ACL,
2014b.

Blake Shaw. Graph Embedding and Nonlinear Dimensionality Reduction. PhD thesis,
Columbia University, 2011.

Matthew Snover, Bonnie Dorr, and Richard Schwartz. Language and translation model adap-
tation using comparable corpora. In Proceedings of EMNLP, 2008.

Nicolas Stroppa, Antal Van den Bosch, and Andy Way. Exploiting source similarity for SMT
using context-informed features. In Proceedings of the International Conference on Theo-
retical Issues in Machine Translation, 2007.

Amarnag Subramanya, Slav Petrov, and Fernando Pereira. Efficient graph-based semi-
supervised learning of structured tagging models. In Proceedings of EMNLP, 2010.

Liang Sun, Shuiwang Ji, and Jieping Ye. A least squares formulation for canonical correlation
analysis. In Proceedings of ICML, 2008.

Akihiro Tamura, Taro Watanabe, and Eiichiro Sumita. Bilingual lexicon extraction from
comparable corpora using label propagation. In Proceedings of EMNLP-CoNLL, 2012.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290:2319–2323, 2000.

Kristina Toutanova, Hisami Suzuki, and Achim Ruopp. Applying morphology generation
models to machine translation. In Proceedings of ACL, 2008.

Zhaopeng Tu, Baotian Hu, Zhengdong Lu, and Hang Li. Context-dependent translation se-
lection using convolutional neural network. In Proceedings of ACL, 2015.

Takeaki Uno and Mutsunori Yagiura. Fast algorithms to enumerate all common intervals of
two permutations. Algorithmica, 26, 2000.

Ashish Vaswani, Haitao Mi, Liang Huang, and David Chiang. Rule markov models for fast
tree-to-string translation. In Proceedings of ACL, 2011.

Ashish Venugopal, Andreas Zollmann, Noah A. Smith, and Stephan Vogel. Preference gram-
mars: softening syntactic constraints to improve statistical machine translation. In Proceed-
ings of NAACL, 2009.

Dekai Wu. Stochastic inversion transduction grammars and bilingual parsing of parallel cor-
pora. Computational Linguistics, 23(3):377–403, 1997.

David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In
Proceedings of ACL, 1995.

108



Hao Zhang, Daniel Gildea, and David Chiang. Extracting synchronous grammar rules from
word-level alignments in linear time. In Proceedings of COLING, 2008.

Jiajun Zhang and Chengqing Zong. Learning a phrase-based translation model from monolin-
gual data with application to domain adaptation. In Proceedings of ACL, 2013.

Ying Zhang, Stephan Vogel, and Alex Waibel. Interpreting BLEU/NIST scores: How much
improvement do we need to have a better system. In Proceedings of LREC, 2004.

Kai Zhao, Hany Hassan, and Michael Auli. Learning translation models from monolingual
continuous representations. In Proceedings of NAACL, 2015.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label
propagation. Technical report, Carnegie Mellon University, 2002.

Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. Semi-supervised learning using gaus-
sian fields and harmonic functions. In Proceedings of ICML, 2003.

Andreas Zollmann and Ashish Venugopal. Syntax augmented machine translation via chart
parsing. In Proceedings of WMT, 2006.

109


	Acknowledgments
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Dissertation Outline
	Research Contributions
	Foundations
	Applications


	Background
	Translation Models
	Lexical Models
	Phrasal Models
	Minimal Grammars
	Related Work

	Multi-view Assumption
	Canonical Correlations Analysis

	Manifold Assumption
	Riemannian Manifolds
	The Manifold Laplacian
	The Graph Laplacian
	Graph Propagation


	Low-Dimensional Embeddings of Translation Units
	Latent-Variable SCFGs
	Marginal Inference with L-SCFGs.
	Computing the Parse Forest
	Tensor Inside-Outside Algorithm

	Parameter Estimation for L-SCFGs
	Estimation with Spectral Method
	Estimation with EM

	Experiments
	Data and Baselines
	Spectral Features
	Chinese–English Experiments
	Analysis

	Related Work
	Summary

	Low-Dimensional Embeddings of Context
	Phrase-Sense Disambiguation for MT
	Low-Dimensional Context
	Disambiguation Models

	Evaluation
	Corpora
	Context Experiments
	Model Variants
	High-Dimensional Comparison
	MT Experiments

	Related Work
	Summary

	Low-Dimensional Context & Semi-Supervised Learning
	Generation & Propagation
	Generation
	Graph Construction
	Candidate Translation List Construction
	Graph Propagation
	 Phrase-based SMT Expansion

	Evaluation
	Datasets
	Experimental Variations
	Large Language Model Effect
	Urdu-English
	Low-Dimensional Graphs
	Analysis of Output

	Related Work
	Summary

	Conclusion
	Future Work

	Bibliography

