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Abstract

In 2009, an average American spent 3 hours per day watch-
ing TV. Recent advances in TV entertainment technologies,
such as on-demand content, browsing the Internet, and 3D
displays, have changed the traditional role of the TV and
turned it into the center of home entertainment. Most of these
technologies are personal and would benefit from seamless
identification of who sits in front of the TV. In this work, we
propose a practical and highly accurate solution to this prob-
lem. This solution uses a camera, which is mounted on a TV,
to recognize faces of people in front of the TV. To make the
approach practical, we employ online learning on graphs and
show that we can learn highly accurate face models in diffi-
cult circumstances from as little as one labeled example. To
evaluate our solutions, we collected a 10-hour long dataset
of 8 people who watch TV. Our precision and recall are in
the upper nineties, and show the promise of utilizing our ap-
proach in an embedded setting.

1 Introduction

As our interaction with the TV evolves by adopting new
technologies, a non-intrusive way of personalizing experi-
ences is still lacking. State-of-the-art solutions to the prob-
lem, such as logging into an entertainment profile or creating
an avatar, are awkward and people refrain from using them.
Ideally, the TV should learn to recognize people seamlessly,
based on little or no feedback. Until recently, this was im-
possible because TVs were not equipped with any sensors.
However, this trend has been changing rapidly. For instance,
Sony Bravia LX900 has an embedded camera, detects faces,
and can adjust its volume based on the distance of people.

In this paper, we put a camera on a TV and use it to recog-
nize people in front of the TV. To make our solution seam-
less, we mostly rely on unlabeled faces and build a data ad-
jacency graph over these faces to discover the underlying
structure of data (Kveton et al. 2010). The adjacency graph
is updated in real time using online learning on quantized
graphs (Valko et al. 2010). This approach is suitable for our
problem because the environment in front of the TV often
changes slowly. As a result, it is possible to learn some of
these changes. Because the environment is not completely
stationary, online learning has a good chance of outperform-
ing offline-trained classifiers.

This paper is not the first attempt to automatically learn
the patterns of TV viewers. For instance, both Chang et
al. (2009) and Phielipp et al. (2010) tried to recognize TV
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viewers based on how they hold the TV remote control and
press its buttons. In comparison to these methods, our ap-
proach has three main advantages. First, it can learn from
as little as a single labeled example. The other two methods
require extensive supervised training. Second, our method
is non-parametric and can adapt to variable data, such as
changes in light or facial expressions. Finally, we utilize a
more informative sensor. Thanks to more informative data,
both the precision and recall of our solutions reach the upper
nineties.

This is the first application of online semi-supervised
learning to a real-world problem that is compelling, has a
value proposition, and involves both noisy data and imper-
fect sensors, such as a low-resolution camera on a TV. All
previous empirical studies are performed on either heavily-
scripted visual data (Grabner, Leistner, and Bischof 2008),
synthetic datasets (Goldberg, Li, and Zhu 2008), or both
(Valko et al. 2010). Our experiments are performed on real-
istic data, which were collected using a TV mounted-camera
when people watched the TV. Therefore, successful infer-
ence on our datasets is a pertinent indicator of successful
inference in an actual deployed system.

The paper has the following structure. In Section 2, we re-
late our paper to the existing work on online semi-supervised
learning, face recognition, and identity inference. In Sec-
tion 3, we introduce the fundamentals of our approach, such
as semi-supervised learning on graphs and online manifold
tracking. In Section 4, we describe our dataset, experimen-
tal setup, and metrics for evaluating our solutions. Results
of our experiments are presented in Section 5 and our future
research directions are outlined in Section 6.

The following notation is used in the paper. The sym-
bols x; and y; refer to the i-th example (face) and its label,
respectively. The examples x; are divided into labeled and
unlabeled sets, [ and u, and labels y; € {—1,1} are given
for the labeled data only.! The total number of training ex-
amples is n = n; + n,, where n; = ||, n, = |u|, and
Ny >> Ny

2 Related Work

In this section, we compare our paper to the existing work on
online semi-supervised learning, face recognition, and iden-
tity inference in consumer devices.

'Our ideas straightforwardly generalize to multi-class classifi-
cation (Balcan et al. 2005).
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Figure 1: a. Our data collection setup. b. An example of an image observed by a TV-mounted camera. c. Examples of extracted

faces.

2.1 Online Semi-Supervised Learning

Both the computer vision and machine learning communi-
ties have recently shown a great interest in online semi-
supervised learning. Online manifold regularization of
SVMs (Goldberg, Li, and Zhu 2008) and online semi-
supervised boosting (Grabner, Leistner, and Bischof 2008)
are two examples of recently proposed algorithms. Online
manifold regularization of SVMs learns a max-margin clas-
sifier, which is regularized by the similarity graph. Online
semi-supervised boosting is a form of boosting, where un-
labeled data are labeled greedily using the similarity graph
and then used in the standard boosting fashion.

The major difference in our work is that we push the limit
of online semi-supervised learning in terms of solving a real-
world problem. Our problem is compelling, naturally on-
line, and involves both noisy inputs (such as the faces of not
necessarily cooperative people) and an imperfect sensor, the
TV-mounted camera (Figure 1).

2.2 Face Recognition

Face recognition has been studied in-depth by the computer
vision community (Zhao et al. 2003). Most of this research
is focused on finding better features. Face recognition in
videos is commonly done by combining per-frame predic-
tors with a temporal model of the environment (Lee et al.
2003).

In comparison to the model-based methods, we use nei-
ther sophisticated features nor temporal models. Our rep-
resentation of faces is a similarity graph, which is updated
over time by tracking the manifold of data in videos. The
advantage of our approach is that it learns from very little
human feedback. However, since we do not model the envi-
ronment, we need to be cautious when extrapolating to new
data. We address this issue in Section 3. Finally, we note
that our similarity graph (Figure 2) can be constructed us-
ing more complex features than those in Section 3.1. Hence,
our online solution is essentially complimentary to finding a
better set of face recognition features.

In the machine learning community, Balcan et al. (2005)
applied the harmonic function solution to face recognition.
In comparison to our work, their solution was completely
offline.

2.3 Identity Inference in Consumer Devices

Another approach to identity inference for TV viewers re-
lies on identifying users based on how they hold a remote

control (Chang, Hightower, and Kveton 2009). In contrast
to this work, which required extensive training (90% of the
data was labeled) and achieved average accuracy levels of
80% in a purely offline setting (and would likely perform
worse in an online one), we achieve 95% recall and precision
on average (accuracy greater than 90%) across all datasets
using just a single labeled example (Section 5). Thus, in
addition to achieving better accuracy, our solution mini-
mizes the amount of (explicit) feedback/interactions with the
user. As a result, we believe that identity inference for other
consumer electronics applications could benefit significantly
from our approach.

3 Approach

In this section, we begin by discussing the construction of
the similarity graph or matrix for our application. We then
review the harmonic function solution, a standard approach
to semi-supervised learning on a similarity graph. Next, mo-
tivated by the real-time requirements of our application, we
look at online learning solutions and present the algorithm
that was used to achieve robust real-time identity inference
in our experiments.

3.1 Similarity Graph

The similarity of faces x; and x; is computed as:

wi; = exp [—d*(xi,%;)/(20%)] , (1)

where o is a tunable heat parameter and d(x;, x;) is the dis-
tance between the faces in the feature space. The distance
is defined as d(x;,x;) = ||x; — x;l|, ,, where x; and x;
are pixel intensities in 96 x 96 face images, and [|-[|; , is
an £;-norm that assigns higher weights to pixels in the cen-
ters of the images. Note that our distance function d(-, -) is
fairly simple. In general, this is not an issue because we use
manifold tracking to discover additional structure in data.

The heat parameter is set as 0 = 0.020. We empirically
select the value of o so that the faces of different people
rarely have a high similarity to each other. For instance, us-
ing this setting, the similarity of any two different faces from
the SZSL subset of the MPLab GENKI database (MPLab
2009) is at most 10—, Note that the o parameter was chosen
based on the GENKI database and not the data we obtained
(Section 4.1).

The distance function d(-,-) induces a fully connected
similarity graph. To prevent arbitrarily small similarities,



we turn the similarity graph into an e-neighborhood graph
by deleting edges whenever w;; < €. In the rest of the pa-
per, we refer to € as the minimum edge and use it to con-
trol label propagation on the graph. The higher the value of
€, the lower the number of edges in the graph and the less
likely it is that two vertices in the graph can be connected
by a path. In Section 5, we study the performance of our
solution as a function of €. Figure 2 shows an example of a
similarity graph for e = 1076,

At any point in time, the similarity graph is represented
by an n X n matrix W, where n is the number of examples
seen thus far. It is helpful to view the similarity matrix as a
kernel k(x;,x;) = wj;, as this allows for a fair comparison
of semi-supervised learning on graphs to unsupervised and
supervised learning.

3.2 Semi-Supervised Learning on Graphs

A standard approach to offline semi-supervised learning is
to minimize the quadratic objective function (Zhu, Ghahra-
mani, and Lafferty 2003):
min £'Le s.t.f; =y; foralli € [; 2)
LER™
where £ is the vector of predictions on both labeled and unla-
beled examples, L = D — W is the Laplacian of the similar-
ity graph, which is given by a matrix W of pairwise similari-
ties w;;, and D is a diagonal matrix defined as d; = Zj Wij.
This problem has a closed-form solution:

Eu = (Luu)ilwulela (3)

which is known as the harmonic function solution (HF'S) be-
cause it satisfied the harmonic property {; = d%_ > jei Wighy
Due to the random walk interpretation of the solution (Zhu,
Ghahramani, and Lafferty 2003), |¢;| can be viewed as a
confidence of assigning the label sgn(¥;) to the vertex 7. The
confidence |¢;| is always between 0 and 1. The closer the
value to 0, the more uncertain the label sgn(¢;).

The control extrapolation to unlabeled data, we regular-
ize the Laplacian as L + v4,I, where 7, is a non-negative
regularization parameter and I denotes the identity matrix.
Similarly to the problem (2), the harmonic function solution
on L + ~y41 can be computed in a closed form:

Eu - (Luu + ’YgI)_lwul‘el- (4)

It can also be viewed as a random walk on the graph W
with an extra sink. At each step, the probability that the
walk ends up in the sink is v,/(d; + 74). Therefore, the
confidence |¢;| of labeling unlabeled vertices drops with the
number of hops from labeled vertices. Moreover, note that
|¢;| decreases as -y, increases. Finally, if no labeled example
can be reached from the vertex ¢, note that the confidence
|¢;| must be 0.

To make the predictor (4) robust to outliers, we refrain
from predicting when |¢;| drops below a small value, such as
10~C. To simplify the parameterization of the predictor, we
link the parameters € and v, as v, = 10e. This setting can be
viewed as follows. First, the higher the connectivity of the
graph, the lower the penalty v, for extrapolation. Second,
the chance of jumping along the minimum edge in the graph
is around 0.1 and rather small. As a result, our predictor
does not extrapolate too far along weak edges.
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Figure 2: A similarity graph over faces. The minimum
edge ¢ is set to 1076.

3.3 Online Learning on Graphs

Imagine setting up your new TV. You register a single image
of your face, and the TV automatically learns over time to
recognize you with high precision and recall. This learning
problem can be solved by online semi-supervised learning
on a graph. In particular, when you sit in front of the TV, it
observes a stream of unlabeled faces and uses their similarity
graph to improve its predictor.

How to solve this problem efficiently using offline learn-
ing (Section 3.2) is not clear. A trivial way is to update the
complete similarity graph at each time step with the new ex-
ample x; and then infer its label. The time complexity of
adding x; and inferring its labels is (t) and Q(¢?), respec-
tively. Therefore, the solution becomes soon impractical and
cannot run in real time (Section 5.1).

3.4 Online Learning on Quantized Graphs

One approach to avoiding the dependence on ¢ is to main-
tain a compact representation of the graph, for instance by
approximating it using n4 representative vertices with radius
R (Valko et al. 2010). The doubling algorithm of Charikar et
al. (1997) can be used to update the representative vertices
incrementally and online. The algorithm works as follows.
At each time step, it takes an example x;, and either merges
it with an existing representative vertex or creates a new one.
When the number of vertices is 41, the vertices are greed-
ily repartitioned into less than n, vertices. While doing this,
we maintain 2 invariants. First, all vertices are at least R
away from each other. Second, any example x; is at most
2R away from its representative vertex. These invariants
are important because they allow for proving bounds on the
quality of our approximations. Pseudocode for computing
the HFS on quantized graphs is given in Figure 3. Note that
the complexity of computing the HFS is O(n?) and hence is
independent of £.

The value of n is largely problem dependent. In our case,
ng should grow with the number of people that are usually
seen by the TV. In the experimental section, we set n, to
1,000. Based on our experiments, this is sufficient to cover
the manifold of faces for two people, which is a common
case in our dataset. Finally, note that the computational cost
of the HFS is €(n?) and that this is the bottleneck of our

algorithm. A practical solution is to replace the exact HFS



Inputs:
an unlabeled example x;
a set of representative vertices C—1
vertex multiplicities v

Algorithm:
i (|Cia] = ny +1)
R=2R
greedily repartition C;—1 into C' such that:
no two vertices in C} are closer than R
for any ¢; € Cy_1 exists ¢; € Cy such that d(ci, c;) < R
update v to reflect the new partitioning
else
Cy =Ci1
Vi = Vi1
find the closest vertex to x; in ¢, € C}
if (d(x¢,cr) < 2R)
Vt(l{?) = Vt(k) + 1
else
vi(|Ci|+1) =1
add x; to the position (|C¢| + 1) in Cy
build a similarity matrix W; over the vertices C U [
build a matrix V; whose diagonal elements are v,
Wy = ViWw Vi
compute the Laplacian L of the graph W,
infer labels on the graph:
(‘et)u - (Luu + ’Yg(‘/t)uu)il(Wt)ul(‘et)l
find the closest vertex to x; incx € Cy U
make a prediction §; = sgn((£:)x)

Outputs:
a prediction g
a set of representative vertices C'
vertex multiplicities v

Figure 3: Harmonic function solution on a quantized graph
at time ¢. The main parameter of the algorithm is the maxi-
mum number of representative vertices n.

solver with a conjugate gradient optimizer on a sparse rep-
resentation of W.

4 Experimental Setup

We present the nature of the data and give a brief overview
of our data collection methods. We also outline the metrics
we used to evaluate the performance of our algorithms.

4.1 Data Collection

We analyze the performance of our algorithm using real-
world data. The data was collected by an external camera at-
tached to a TV that captured viewers in a natural state while
watching TV content. The camera and TV were linked to a
desktop computer which functioned as the storage location
for the captured images as well as a processing hub for our
identity inference algorithm.

The data was collected in a semi-secluded indoor envi-
ronment (Figure 1). Video frames are captured at a rate of 3
frames per second (fps) at a 1600 x 1200 resolution. The fps
rate was optimized to maximize the amount of camera data
we captured while ensuring that TV content playback was
smooth, as the same processor was used for playing content
and face data collection.

From each frame, we detect and extract faces using
OpenCV, while also maintaining a mapping between the
data points (faces) and the frame that they are extracted
from. Since multiple people might have been watching tele-
vision at the time of experiment, multiple faces can also be
extracted. The images are turned into grayscale, resized
to 96 x 96 pixels and smoothed using a Gaussian kernel.
Finally the image histograms of pixel intensities are also
equalized. When labeling faces, we choose a single, sym-
metric, face-centered image of the subject.

A subset of our data, a part of which is showed in Fig-
ure lc, is chosen as an illustrative dataset DD;. The dataset
consists of 1,435 faces of one person and 499 faces of an-
other person in the dataset. One of the 1,435 images is
labeled and used to predict the labels for the other 1434.
The other 499 images are rightfully predicted as outliers. In
short, Dataset D; is just 10 minutes long; small when com-
pared to the rest of our data, yet large enough to illustrate
our computational trends. We use this dataset to compare
our method to the online and offline variants of the HEFS.

Dataset Dy is 10 hours long, was collected over a period
of one month and involves all data in which one or more
people watched the TV. The dataset consists of 6 TV watch-
ing sessions, and we considered each session a subset. Each
subset consists of up to two people watching TV, with an
occasional outlier, which happens when someone passes by.
Only one of the images of each person that watches the TV
is labeled. To the end of each subset, we append five min-
utes of data, consisting of images of people who are not in
the dataset. These people are used to test the sensitivity of
our predictor to outliers. We perform our experiments sepa-
rately on each of the subsets and then aggregate all results.

We note that the datasets in this work are very distinct
from those used in previous related works. For example,
in Valko et al. (2010), the experiments were deliberately
staged, in front of a computer, and only a few minutes long.
In contrast, we conducted completely uncontrolled experi-
ments over a month. There was no limit to the number of
users, the duration of a TV-watching session, or in the man-
ner users watched content. All recorded sessions had mul-
tiple disruptions (e.g. random people entering/leaving the
frames). Lighting conditions differed depending on ambient
lighting and time of day. The distance between the viewer
and the TV, while typical for TV watching, presented ad-
ditional challenges for accurate face recognition. Unlike in
similar works, there is no difference between the datasets
that we evaluated and the real world data the system would
see in an embedded setting.

4.2 Evaluation

All compared algorithms are evaluated by their precision
and recall. In Dataset D, we deal with individual faces,
know the true labels, and both the precision and recall can
be computed in a straightforward way.

To avoid tedious labeling of all faces in Dataset Dy, we
use a trick. Instead of labeling individual faces, we labeled
video frames. Since TV viewing sessions are continuous,
their true labels can be obtained very easily. The correspond-
ing precision and recall are computed based on our new def-
initions of true positives, false positives, and false negatives.
A true positive occurs when the subject’s face is in the frame
and we identify it. A false negative occurs when a person’s
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Figure 4: Precision and recall of 4 face recognizers on
Dataset D;. The recognizers are trained by HFS, online
HFS, online quantized HFS, and a NN classifier. The points
on the curves correspond to various €. For the harmonic
function solutions, ¢ varies from 10~% to 10~'2 in multiples
of 10~2. For the NN classifier, £ varies from 10~* to 10~2*
in multiples of 10~%. Different scales are used because the
two algorithms have different sensitivities to €.

face is in the frame and we fail to identify it. A false posi-
tive occurs when a viewer’s face is not in the frame and we
identify it. When a predictor makes multiple identical pre-
dictions, we consider it a false positive. This penalizes the
predictor for extrapolating too far. Finally, after we compute
the per-frame precision and recall for each TV watching ses-
sion, we aggregate them and report the final numbers.

The precision-recall curves that we generate are obtained
by varying the minimum edge. As discussed in Section 3.1,
these variations have the effect of loosening or tightening
our extrapolation to unlabeled data points. As the minimum
edge becomes smaller, recall increases at the expense of de-
creasing precision.

4.3 Frame Windows

When people sit in front of the TV, they often look away
from it for short periods of time, for instance when talking
to another person. Therefore, the per-frame evaluation un-
fairly penalizes face recognizers, such as when no face is
extracted from a frame (since the person is looking away
from the TV). To mitigate this issue, we look at the preci-
sion and recall of face recognizers in 10-second windows
(30 frames). The corresponding true positives, false posi-
tives, and false negatives are defined as follows.

A false positive occurs if there is at least one false positive
in the 10-second window. If this is not the case, a true posi-
tive occurs if there is at least one true positive in the window.
Finally, if none of the above is true, a false negative occurs
if there is at least one false negative in the window. This
transformation is only applied to Dataset Ds.

5 Results

First, we compare our online quantized HFS solver to its on-
line and offline counterparts, as well as the nearest-neighbor
(NN) classifier, on dataset ;. We show that the online
quantized HFS matches the performance of the online HFS

at a fraction of the computational cost and exceeds the per-
formance of the NN classifier. We also compare the cumula-
tive time taken to predict labels on the entire dataset. Next,
on the larger dataset Do, we evaluate precision and recall
for the six sub-datasets, take the average of the results to get
an aggregated view of the performance, and compare these
results to the NN classifier. The online quantized HFS out-
performs the supervised classifier at all settings of the min-
imum edge. Lastly, we compare our results from D; with a
competition-winning state-of-the-art video face recognition
system. We outperform this system, realizing higher preci-
sion/recall with significant speed-up.

5.1 Semi-Supervised Learning on Dataset D,

Figure 4 compares the precision and recall of three har-
monic function solutions on Dataset ). Based on these re-
sults, we can see that the offline HFS has the best precision-
recall characteristics (in fact, it has optimal precision and
recall) because it has complete knowledge of the entire sim-
ilarity graph when performing inference. The online quan-
tized HFS maintains very high precision and recall levels
and matches the performance of the online HFS. Our solu-
tion also outperforms the nearest neighbor classifier at all
precision-recall settings, as indicated by the relative posi-
tions of the precision-recall curves.

Figure 5 compares the cumulative computation time taken
across all three HFS algorithms. The figure shows that for
even modest amounts of streaming data (10 minutes worth
in this instance), the inference quickly becomes intractable
for the online HFS. The only computational “bumps” or
“spikes” for the online quantized HFS occur whenever the
number of vertices is at or crosses ny. This is due to the
quantization that occurs at these points as described in Sec-
tion 3.3. Despite these occasional bursts, the online quan-
tized HFS far outpaces the online HFS while yielding simi-
lar precision-recall performance as can be seen in Figure 4.

We compared our results on Dataset D1 with a state-of-
the-art commercial face recognizer. We achieved 100% pre-
cision and recall with our presented approach, however, the
commercial recognizer performed poorly on recall and it
never exceeded 94%. Additionally, our algorithm is roughly
5 times faster, mostly due to the commercial system’s expen-
sive feature extraction and face rotation adjustment steps.
Our algorithm’s emphasis on real-time inference and im-
proving performance over time shows that identity inference
at near-perfect levels can be achieved with just one labeled
example, a useful result for deployed and embedded sys-
tems.

5.2 Semi-Supervised Learning on Dataset D-

Figure 6 shows the precision and recall of our solution and
the NN baseline on Dataset D5. Based on these results, our
online quantized HFS learner outperforms or is equivalent
to a supervised, nearest neighbor learner in all instances.
In fact, our solution achieves 100% precision at more than
twice the recall of the supervised solution. In addition, with
just one labeled data point high precision and high recall are
achievable: our algorithm achieves 95% precision at 95%
recall.
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Figure 6: Precision and recall of 2 face recognizers on
Dataset Dy. The recognizers are trained by a NN classi-
fier and online quantized HFS. The points on the curves are
computed in the same way as in Figure 4.

6 Conclusion

In this paper, we apply a fast algorithm for online learning
on graphs to the problem of automatic identity inference of
users in front of the TV. We require TV viewers to register
only a single image of their face, after which the model is
improved over time using unlabeled faces observed by the
TV. The approach is evaluated on a 10-hour long TV watch-
ing dataset, and both its precision and recall are in the upper
nineties. This work is the first instance of using online learn-
ing on graphs in the consumer electronics space and it shows
a lot of promise.

In the future, we intend to integrate our inference algo-
rithm more closely with the TV functionality so that users
can see the benefits of personalization (for example auto-
matically changing the channel to the user’s favorite one).
We also anticipate running the system for a longer period of
time, studying its behavior, and finding practical settings for
its parameters, such as the maximum number of represen-
tative vertices ny. Finally, we hope to identify TV viewers
based on other features, such as the color of clothes.

7 Acknowledgements

We would like to thank Intel Corporation for funding the
equipment to conduct these experiments.

References

Balcan, M.-F.; Blum, A.; Choi, P. P.; Lafferty, J.; Pantano,
B.; Rwebangira, M. R.; and Zhu, X. 2005. Person identifica-
tion in webcam images: An application of semi-supervised
learning. In ICML 2005 Workshop on Learning with Par-
tially Classified Training Data.

Chang, K.; Hightower, J.; and Kveton, B. 2009. Inferring
identity using accelerometers in television remote controls.
In Proceedings of the 7th International Conference on Per-
vasive Computing, 151-167.

Charikar, M.; Chekuri, C.; Feder, T.; and Motwani, R. 1997.
Incremental clustering and dynamic information retrieval. In
Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, 626-635.

Goldberg, A.; Li, M.; and Zhu, X. 2008. Online man-
ifold regularization: A new learning setting and empiri-
cal study. In Daelemans, W.; Goethals, B.; and Morik,
K., eds., Machine Learning and Knowledge Discovery in
Databases, volume 5211 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg. 393-407.

Grabner, H.; Leistner, C.; and Bischof, H. 2008. Semi-
supervised on-line boosting for robust tracking. In Forsyth,
D.; Torr, P; and Zisserman, A., eds., Computer Vision
ECCV 2008, volume 5302 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg. 234-247.

Kveton, B.; Valko, M.; Philipose, M.; and Huang, L.
2010. Online semi-supervised perception: Real-time learn-
ing without explicit feedback. In Proceedings of the 4th
IEEFE Online Learning for Computer Vision Workshop.

Lee, K.-C.; Ho, J.; Yang, M.-H.; and Kriegman, D. 2003.
Video-based face recognition using probabilistic appearance
manifolds. Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on 1:313.

MPLab, U. 2009. MPLab GENKI Database. http://
mplab.ucsd.edu.
Phielipp, M.; Galan, M.; Lee, R.; Kveton, B.; and High-
tower, J. 2010. Fast, accurate, and practical identity infer-
ence using tv remote controls. In Innovative Applications of
Artificial Intelligence.

Valko, M.; Kveton, B.; Huang, L.; and Ting, D. 2010. On-
line semi-supervised learning on quantized graphs. In Pro-
ceedings of the 26th Conference on Uncertainty in Artificial
Intelligence.

Zhao, W.; Chellappa, R.; Phillips, P. J.; and Rosenfeld, A.
2003. Face recognition: A literature survey. ACM Comput.
Surv. 35:399-458.

Zhu, X.; Ghahramani, Z.; and Lafferty, J. 2003. Semi-
supervised learning using gaussian fields and harmonic
functions. In Proceedings of the 20th International Con-
ference on Machine Learning, 912-919.



