Semi-Supervised Learning with Cover Trees

Avneesh Saluja Branislav Kveton
Carnegie Mellon University Technicolor Labs
avneesh@cmu.edu branislav.kveton@technicolor.com

1 Introduction

Semi-supervised learning (SSL) has emerged in recent years as an important tool to tackle large
amounts of data. Generally in large-data scenarios, one finds that the ratio of unlabeled to labeled
data is very high, and that annotating and labeling data for training a learning algorithm is often
resource-demanding and expensive. This issue makes semi-supervised techniques a natural way to
explore, understand, and learn from these large datasets [14].

A subset of semi-supervised learning approaches that has been quite successful relies on constructing
a similarity or a data adjacency graph between all the points in the training set, labeled and unlabeled,
and using the structure of the graph as well as the labeled points to predict labels over the unlabeled
data. These methods are collectively referred to as graph-based semi-supervised learning. Graph-
based learning is ©(n?) in the number of datapoints in the training set [4], because it takes §(n?)
time to build the similarity graph over all datapoints. This approach is impractical for large n.

Many approximations exist to circumvent or limit the quadratic time complexity, the most common
approach being to select k representative vertices of the graph [9, 12, 13]. The basic idea is to main-
tain a compact representation of the entire similarity graph, and infer labels for these representative
vertices using a graph-based SSL method. Subsequently, labels are propagated from the chosen ver-
tices to the rest of the graph. For example, Liu et al. [9] pick a set of representative points known as
anchors, and express all other points as a convex combination of the anchor points. The complexity
of these methods is Q(k? + k(n — k)) because it takes #(k?) time to build the representative ver-
tex similarity graph and 6(k(n — k)) time to propagate labels to the rest of the data, in addition to
the time required to compute labels for the unlabeled data using graph-based SSL. These methods
are linear in n if k is independent of n, however in practice k£ and n are dependent, as a large k is
required to get good coverage for large datasets (large n).

In this work, we investigate another way of summarizing the data. Instead of focusing on k rep-
resentative vertices, we represent data as a tree at different levels of granularity. We show that our
approach is scalable to large datasets, and compares favorably to representative vertex selection
methods for scaling up graph-based SSL.

2 Approach

Our work concentrates on the scalability of a well-known graph-based SSL algorithm, the harmonic
function solution (HES) [15]. We note however, that the presented approach is applicable to any
graph-based SSL algorithm and can result in speed-ups for practically all such methods.

We first construct a cover tree of the entire dataset prior to graph construction. The idea is that,
given a set of points in a metric space defined by the metric d, we can preprocess the data such that
nearest neighbor queries can be done efficiently. Generally, nearest neighbor search is 6(n), but by
leveraging the structure of the data we can speed up the query time. The cover tree ‘covers’ the data
at various levels of granularity. From Beygelzimer et al. [5]':

'we modify the indexing of the levels compared to the original definition, this has no effect on the actual
data structure



Definition 1. A cover tree T' on a dataset S is a leveled tree where each level is a “cover” for the
level beneath it. Each level is indexed by an integer scale © which increases as the tree is descended.
Let C; denote the set of nodes at level i. A cover tree T on a dataset S obeys the following invariants

forall i:
e (nesting) C; C Ci11

e (covering tree) For every p € Ciy1, there exists a q € C; satisfying d(p,q) < 2¢, and
exactly one such q is a parent of p

e (separation) For all p,q € C;,d(p,q) > 2

Given a fixed intrinsic dimensionality (see [5] for more details), the cover tree construction time is
is O(nlogn), the running time of a nearest neighbor query is O(logn), and the space usage is only
O(n). The confluence of these properties allows us to scale to very large datasets. Compare these
costs with conventional graph construction approaches, which are #(n?) in time and space. Further-
more, these costs also improve upon representative vertex-based approximation methods when k and
n are dependent. For example if we choose k& = +/n, the time complexity for graph construction is
Q(n3/?), versus O(nlogn) construction time for the cover tree?. Yet, we observed (Section 3) that
we often need k > /n to get meaningful performance for large n.

From the cover tree, we construct an ultra-sparse similarity matrix W,,, of the unlabeled datapoints.
We include in the matrix W,,,, an edge between the every datapoint in the tree and its parent. Thus,
we have n — 1 edges in our similarity graph. Note that this is the minimum number of edges needed
to cover the dataset with a single connected component. Each unlabeled example is also connected
to its closest labeled vertex (submatrix W,;). Our representation can be viewed as a small world
network [6]: each vertex is reachable from any other vertex in O(logn) steps. Furthermore, the
distance between a parent at level ¢ and its children is in the interval [21%, %] Afterwards, we
compute a graph Laplacian from the similarity matrix, which is then used in the HFS computation.
We take this opportunity to briefly remind the reader of the HFS. We wish to minimize the following
objective function:

min £'LE s.t. £; = y; foralli € ()

LER
where £ is the vector of predictions on both labeled and unlabeled examples, L = D — W is the
Laplacian of the similarity graph, which is given by a matrix W of pairwise similarities w;;, and D
is a diagonal matrix defined as d; = > ; wij. This problem has a closed-form solution:

Eu = (Luu)ilwulela (2)

which is known as the harmonic function solution because it satisfied the harmonic property ¢; =
1
4 iji Wi éj .

By using a sparse Laplacian matrix, we can speed up the computation of Equation 2. Two such
approaches for sparsifying are k-nearest neighbor (k-NN) sparsification, and edge-weight thresh-
olding sparsification. In k-NN sparsification, we maintain edges between a point and its k nearest
neighbors and discard the other edges. In edge-weight thresholding, all edge weights less than a
chosen threshold are set to be 0. For small dataset sizes, these heuristics are appropriate, but for
very large datasets they break down, since the heuristics rely on first computing the entire similarity
matrix and then sparsifying. The cover tree-based approach, however, not only speeds up graph
construction but also yields a naturally sparse representation for our similarity graph, since we only
preserve edge weights between parents and children. The full similarity matrix is never computed
before sparsifying.

3 Experiments & Results

We conducted experiments on two datasets. The first, the Covertype dataset (‘Cover’) [2], consisted
of more than 580,000 examples, and the goal was to predict forest cover types from cartographic fea-
tures only. The second dataset we used was the 2004 KDD Cup Particle Physics dataset (‘Physics’)

%in fact, O(n logn) is asymptotically smaller than O(n'™<), ¢ > 0



Accuracy vs. Labeled Data (500,000 examples)

o
a
T

Accuracy (%)
3

IS
&
T

40

——Cover Tree HFS

——Full HFS (max = 5000)

- - - Sparse HFS (max = 5000)
CT 1-NN HFS

——CT 5-NN HFS

——NN Supervised

200

300

500 600 700 800 900

400 1000
Amount of Labeled Data (examples)

(a) ‘Cover’ dataset, 500,000 examples

Accuracy vs. Labeled Data (50,000 examples)

60|

Accuracy (%)
&

sef /"

——Cover Tree HFS
——Full HFS (max = 5000)

CT 1-NN HFS
——CT 5-NN HFS
—— NN Supervised

- - - Sparse HFS (max = 5000) |

200 300 400 500 00 700 800 900
Amount of Labeled Data (examples)

(b) ‘Physics’ dataset, 50,000 examples

Figure 1: Accuracy as a function of the number of labeled examples the ‘Cover’ and ‘Physics’
datasets. The cover tree results (blue) are on par with 5-NN, despite being computed significantly

faster.

Accuracy vs. Computational Time

69

*

68.5

68

67.5

Accuracy (%)

&
o
L ]
L]

67

66.5

*

*

*
‘0

L4

*

660 500

1000

1500

Time (seconds)

2000

2500

3000

69

68.5

68

67.5

Accuracy (%)

67

66.5

66,

*

Accuracy vs. Sparsity

*

*
* *

LR
*

* Cover Tree HFS
1-NN HFS
¢ 5-NNHFS

2 4 6 8
Sparsity (number of non-zero elements) x10°

Figure 2: Accuracy as a function of computational time and sparsity for the cover tree, 1-NN and
5-NN HFS. Note that while the cover tree is similar in sparsity as 1-NN, it achieves higher accuracy.

[1], which consisted of 50,000 examples. All experiments were conducted on a 2.66 GHz Intel Core
2 Duo Macbook Pro with 8GB RAM. Despite the limited hardware, we were able to handle more
than half a million datapoints with the cover tree HFS implementation on one laptop.

We compared our cover tree approach to a) a supervised, nearest-neighbor classifier, b) an approx-
imate HFS method, which we call “subsetHFS”, where we randomly selected 5000 representative
vertices, solved the HFS over these vertices, and then used 1-nearest neighbor label propagation
from the HFS-labeled points to label the remaining points in the dataset, and c¢) k-NN similarity
matrices (for k& = {1,5}) that are constructed from the cover tree, i.e., we use the cover tree to
find the k nearest neighbors and symmetrize the similarity matrix. Also, to compare the accuracy
for similar levels of sparsity, we tried a variant of “subsetHFS” where we first computed the full
similarity matrix with £ = 5000 and then enforced a threshold for the edge weight. We chose the
threshold to ensure the number of non-zero elements would be roughly equivalent to the cover tree
representation. We fixed the total number of examples at 500,000 and 50,000 respectively, and mea-
sured accuracy as a function of the number of labeled examples (varying from 100 to 1000). Figure
1 shows these trends.

Lastly, to compare the cover tree and cover tree-derived 1-NN and 5-NN solutions, we varied the
number of datapoints from 10,000 to 100,000 examples for the ‘Cover’ dataset and at each stage
recorded the computational time taken to compute the requisite matrices and their respective sparsi-
ties. The results are presented in Figure 2. The computational time takes into account constructing
the cover tree and k-NN graphs, computing the respective Laplacians and solving the HFS using a
linear solver. Sparsity is measured by the number of non-zero elements (non-zero edges between
unlabeled datapoints and unlabeled and labeled datapoints). The important point to bear in mind is



the k-NN graph construction is on top of the cover tree construction and adds significantly to the
computation time (up to 6 times longer). Note that computational time and sparsity comparisons
with “subsetHFS” were not done: for “subsetHFS”, the time scales with Q(k? + k(n — k)), where
k = 5000, and the number of non-zero elements is on a different scale, since we are dealing with a
full 5000 x 50000 matrix.

From these results, we see that the our proposed cover tree approach compares favorably to both
“subsetHFS”’-based and cover tree-based k-NN approaches. Regarding subset selection, there are
obviously better ways to select representative vertices for HFS computation rather than random
selection, for example k-means clustering. But all of these preprocessing techniques come at a high
price, especially for a high number of clusters k, and high dimensionality of the data (although we
note that there is work on speeding up these selection methods). We achieve similar sparsity levels to
a 1-NN graph, yet better accuracy in general. It is interesting to see that while our cover tree matrix
is much more sparse compared to a 5-NN matrix, the results for the ‘Cover’ dataset are comparable.
The ultra-sparse cover tree representation of maintaining edges only between parents and children,
while computed in a fraction of the time as the other approaches (Figure 2), is on par with them in
terms of accuracy.

4 Related Work

An alternative approach undertaken by Fergus et al. [7] is based on making significant assumptions
about the distribution from which the data was generated. In particular, since the HFS amounts to
solving a large linear system, one can reduce the size of the problem by only considering a smaller
number of eigenvectors of the Laplacian. But if instead of computing over the graph Laplacian
directly, one makes the assumption that the data is generated by a certain parametric distribution
that can be written as the product of distributions over individual features, it may be simpler to
compute the eigenfunctions of the probability function directly. This corresponds to computing
eigenfunctions of the Laplace-Beltrami operator. This approximation becomes more valid as the
number of datapoints n — oo. The method relies on the data being separable by dimension, an
assumption which does not always hold in real-world datasets.

Some prior work has looked at using kd-trees [3] for data representation, but such approaches often
fall prey to the curse of dimensionality, since kd-trees are notorious for scaling poorly in dimension
[8]. Kd-trees are also dependent on the real dimensionality of the data, while cover trees have in-
trinsic dimensionality dependence. Parallelization [11] and distributed computing [10] perspectives
have also been used for large-scale SSL, and while these methods are orthogonal to the direction that
we pursue in this work, they can be easily combined with cover trees to yield additional scalability
and speed-ups.

5 Discussion and Future Work

We observed that for k£ of moderate magnitude (i.e., & = 5), the accuracy of the cover tree-derived
k-NN graph is higher than our ultra-sparse approach, where we include edges only between parents
and children of the cover tree (however for low k this method of edge selection seems to perform
better than k-NN). The major deficiency in our approach is that we do not allow connections between
different sub-trees in the cover tree, whereas k-NN does not make the distinction between sub-trees.
The comparison with cover tree-based k-NN graphs is insightful in that it suggests using the cover
tree as a way to combine different nearest neighbor representations at various levels of the tree. The
cover tree allows us to look at the coverage of the data at different levels of granularity and provides
a way to trade off approximation quality and accuracy in a principled and intuitive manner.

Graph construction has not been closely looked at, despite its significant contribution to most graph-
based SSL algorithms’ computational costs. What we have shown in this work is a fast an efficient
way to construct a naturally sparse similarity matrix or Laplacian, with resulting speed-ups in har-
monic function solution computation. The main idea behind improved performance is to represent
the data at different levels of granularity, and the techniques are broadly applicable to an array of
graph-based SSL algorithms.



References

[1] The 2004 kdd-cup dataset. http://osmot.cs.cornell.edu/kddcup/.
[2] Uci machine learning repository. http://archive.ics.uci.edu/ml/.

[3] Andreas Argyriou. Efficient approximation methods for harmonic semi-supervised learning,
2004.

[4] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geomet-
ric framework for learning from labeled and unlabeled examples. The Journal of Machine
Learning Research, 7:2399-2434, 2006.

[5] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. Pro-
ceedings of the 23rd international conference on Machine learning - ICML "06, pages 97-104,
2006.

[6] David Easley and Jon Kleinberg. Networks, Crowds, and Markets. Cambridge Books. Cam-
bridge University Press, 2010.

[7] Rob Fergus, Y. Weiss, and Antonio Torralba. Semi-supervised learning in gigantic image
collections. Advances in Neural Information Processing Systems, 1:1-9, 2009.

[8] Jacob E. Goodman, Joseph O’Rourke, and Piotr Indyk, editors. Handbook of discrete and
computational geometry (2nd ed.). CRC Press, Inc., Boca Raton, FL, USA, 2004.

[9] Wei Liu, Junfeng He, and S.F. Chang. Large graph construction for scalable semi-supervised
learning. In Proceedings of the 27th International Conference on Machine Learning, pages
1-8, 2010.

[10] Delip Rao and David Yarowsky. Ranking and semi-supervised classification on large scale
graphs using map-reduce. In Proceedings of the 2009 Workshop on Graph-based Methods
for Natural Language Processing - TextGraphs-4, number August, page 58. Association for
Computational Linguistics, 2009.

[11] Amarnag Subramanya and J.A. Bilmes. Entropic graph regularization in non-parametric semi-
supervised classification. In Neural Information Processing Society (NIPS), pages 1-9, 2009.

[12] A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold learning. In IEEE Conference
on Computer Vision and Pattern Recognition, June 2008.

[13] Michal Valko, B. Kveton, L. Huang, and D. Ting. Online Semi-Supervised Learning on Quan-
tized Graphs. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence,
2010.

[14] Xiaojin Zhu. Semi-Supervised Learning Literature Survey. Technical report, 2008.

[15] Xiaojin Zhu, Z. Ghahramani, and John Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the Twentieth International Conference on
Machine Learning (ICML-2003), volume 20, page 912, 2003.



